Chapter 4: Problem 296
Suppose a matrix A satisfies \(\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=0 .\) If \(\mathrm{A}^{5}=\mathrm{aA}+\mathrm{bI}\) then the value of \(2 \mathrm{a}-3 \mathrm{~b}\) must be (a) 4135 (b) 1435 (c) 1453 (d) 3145
Chapter 4: Problem 296
Suppose a matrix A satisfies \(\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=0 .\) If \(\mathrm{A}^{5}=\mathrm{aA}+\mathrm{bI}\) then the value of \(2 \mathrm{a}-3 \mathrm{~b}\) must be (a) 4135 (b) 1435 (c) 1453 (d) 3145
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of the determinant $$ \left|\begin{array}{ccc} \sin \theta & \cos \theta & \sin 2 \theta \\ \sin [\theta+(2 \pi / 3)] & \cos [\theta+(2 \pi / 3)] & \sin [2 \theta+(4 \pi / 3)] \\ \sin [\theta-(2 \pi / 3)] & \cos [\theta-(2 \pi / 3)] & \sin [2 \theta-(4 \pi / 3)] \end{array}\right| $$ is (a) 0 (b) \(2 \sin \theta\) \(1-\sin 2 \theta \quad\) (d) \(-2 \cos \theta\)
If the system of equations \(x+a y=0, a z+y=0, a x+z=0\) has infinite number of solutions then \(\mathrm{a}=\) (a) 0 (b) 1 (c) \(-1\) (d) \(-2\)
The value of \(\left|\begin{array}{cc}\log _{3} 1024 & \log _{8} 3 \\ \log _{3} 8 & \log _{4} 9\end{array}\right| \times\left|\begin{array}{ll}\log _{2} 3 & \log _{4} 3 \\ \log _{3} 4 & \log _{3} 4\end{array}\right|=\ldots\) (a) 6 (b) 9 (c) 10 (d) 12
If \(z\) is a complex number and \(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\) are all real, then $$ \left|\begin{array}{lll} a_{1} z+b_{1} z & a_{2} z+b_{2} z & a_{3} z+b_{3} z \\ b_{1} z+a_{1} z & b_{2} z+a_{2} z & b_{3} z+a_{3} z \\ b_{1} z+a_{1} & b_{2} z+a_{2} & b_{3} z+a_{3} \end{array}\right|=\ldots $$ (a) \(|\underline{z}|^{2}\) (b) \(\left(a_{1} a_{2} a_{3}+b_{1} b_{2} b_{3}\right)^{2}|z|^{2}\) (c) c (d) 0
Let $$ A=\left|\begin{array}{ccc} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{array}\right| $$ If \(\mathrm{q}\) is the angle between two non-zero column vectors \(\mathrm{X}\) such that \(\mathrm{AX}=\lambda \mathrm{X}\) for some scalar \(\lambda\), then \(\tan \theta=\) (a) \([7 /\\{\sqrt{(202)\\}]}\) (b) \((\sqrt{3} / 19)\) (c) \(\sqrt{[} 3 /(202)]\) (d) \((7 / 19)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.