Chapter 4: Problem 298
If $$ \mathrm{A}=\left|\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{2013}=\) (a) \(2^{2012} \mathrm{~A}\) (b) \(2^{1006} \mathrm{~A}\) (c) \(-2^{2013} \mathrm{~A}\) (d) I
Chapter 4: Problem 298
If $$ \mathrm{A}=\left|\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{2013}=\) (a) \(2^{2012} \mathrm{~A}\) (b) \(2^{1006} \mathrm{~A}\) (c) \(-2^{2013} \mathrm{~A}\) (d) I
All the tools & learning materials you need for study success - in one app.
Get started for free\(\left|\begin{array}{ccc}\sin (x+p) & \sin (x+q) & \sin (x+r) \\ \sin (y+p) & \sin (y+q) & \sin (y+r) \\ \sin (z+p) & \sin (z+q) & \sin (z+r)\end{array}\right|=\ldots\) (a) \(\sin (x+y+z)\) (b) \(\sin (\mathrm{p}+\mathrm{q}+\mathrm{r})\) (c) 1 (d) 0
\(\mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}\cos \mathrm{x} & 0 & \sin \mathrm{x} \\ 0 & 1 & 0 \\ -\sin \mathrm{x} & 0 & \cos \mathrm{x}\end{array}\right|, \mathrm{g}(\mathrm{y})=\left|\begin{array}{ccc}\cos \mathrm{y} & -\sin \mathrm{y} & 0 \\ \sin \mathrm{y} & \cos \mathrm{y} & 0 \\ 0 & 0 & 1\end{array}\right|\) (i) \(\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(\mathrm{y})=\) (a) \(\mathrm{f}(\mathrm{xy})\) (b) \(\mathrm{f}(\mathrm{x} / \mathrm{y})\) (c) \(\mathrm{f}(\mathrm{x}+\mathrm{y})\) (d) \(\mathrm{f}(\mathrm{x}-\mathrm{y})\) (ii) Which of the following is correct? (a) \([\mathrm{f}(\mathrm{x})]^{-1}=[1 /\\{\mathrm{f}(\mathrm{x})\\}]\) (b) \([\mathrm{f}(\mathrm{x})]^{-1}=-\mathrm{f}(\mathrm{x})\) (c) \([\mathrm{f}(\mathrm{x})]^{-1}=\mathrm{f}(-\mathrm{x})\) (d) \([\mathrm{f}(\mathrm{x})]^{-1}=-\mathrm{f}(-\mathrm{x})\) (iii) \([\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{y})]^{-1}=\) (a) \(\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{g}\left(\mathrm{y}^{-1}\right)\) (b) \(\mathrm{f}\left(\mathrm{y}^{-1}\right) \mathrm{g}\left(\mathrm{x}^{-1}\right)\) (c) \(\mathrm{f}(-\mathrm{x}) \mathrm{g}(-\mathrm{y})\) (d) \(\mathrm{g}(-\mathrm{y}) \mathrm{f}(-\mathrm{x})\)
\(\left|\begin{array}{ccc}(b+c)^{2} & a^{2} & a^{2} \\ b^{2} & (c+a)^{2} & b^{2} \\ c^{2} & c^{2} & (a+b)^{2}\end{array}\right|=k(a b c)(a+b+c)^{3}\), then \(k=\ldots\) (a) (b) - 1 (c) \(-2\) (d) 2
If \(f(x)=\left|\begin{array}{ccc}2 \cos ^{2} x & \sin 2 x & -\sin x \\ \sin 2 x & 2 \sin ^{2} x & \cos x \\ \sin x & -\cos x & 0\end{array}\right|\) then \((\pi / 2) \int_{0}\left[f(x)+f^{\prime}(x)\right] d x=\ldots .\) (a) 1 (b) \(\pi\) (c) 0 (d) \([(1 / 3)-(\pi / 2)]\)
If the equations \(a x+b y+c z=0,4 x+3 y+2 z=0\) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=0\) have non-trivial solution, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in... (a) A.P. (b) G.P. (c) Increasing sequence (d) decreasing sequence.
What do you think about this solution?
We value your feedback to improve our textbook solutions.