If $$ \mathrm{A}=\left|\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{2013}=\) (a) \(2^{2012} \mathrm{~A}\) (b) \(2^{1006} \mathrm{~A}\) (c) \(-2^{2013} \mathrm{~A}\) (d) I

Short Answer

Expert verified
The correct answer is \( A^{2013} = 2^{2012} A \), which matches answer option (a).

Step by step solution

01

Calculate A^2

To calculate A^2, multiply matrix A by itself: \(A^2 = A \cdot A = \left|\begin{array}{ll} 1 & 1 \\\ 1 & 1 \end{array}\right| \cdot \left|\begin{array}{ll} 1 & 1 \\\ 1 & 1 \end{array}\right|\) To multiply two matrices, we multiply the elements of row i of the first matrix by the elements of column j of the second matrix and sum the products: \(A^2 = \left|\begin{array}{ll} (1)(1)+(1)(1) & (1)(1)+(1)(1) \\\ (1)(1)+(1)(1) & (1)(1)+(1)(1) \end{array}\right| = \left|\begin{array}{ll} 2 & 2 \\\ 2 & 2 \end{array}\right|\)
02

Calculate A^3

To calculate A^3, multiply matrix A^2 by matrix A: \(A^3 = A^2 \cdot A= \left|\begin{array}{ll} 2 & 2 \\\ 2 & 2 \end{array}\right| \cdot \left|\begin{array}{ll} 1 & 1 \\\ 1 & 1 \end{array}\right|\) Following the same matrix multiplication rules as before: \(A^3 = \left|\begin{array}{ll} (2)(1)+(2)(1) & (2)(1)+(2)(1) \\\ (2)(1)+(2)(1) & (2)(1)+(2)(1) \end{array}\right| = \left|\begin{array}{ll} 4 & 4 \\\ 4 & 4 \end{array}\right|\)
03

Identify the pattern

We can see a pattern emerging from these calculations. For each power n of matrix A, the elements of the resulting matrix A^n are equal to \(2^{n-1}\). Therefore, we can directly calculate A^2013 following this pattern:
04

Calculate A^2013

Using the pattern we have identified, we can find the elements of A^2013: \( A^{2013} = \left|\begin{array}{ll} 2^{2012} & 2^{2012} \\\ 2^{2012} & 2^{2012} \end{array}\right|\) Now we can see that A^2013 matches with answer option (a):
05

Choose the correct answer

After calculating A^2013 using the pattern, we find that the correct answer is (a): $$A^{2013} = 2^{2012} \mathrm{ ~A}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\left|\begin{array}{ccc}\sin (x+p) & \sin (x+q) & \sin (x+r) \\ \sin (y+p) & \sin (y+q) & \sin (y+r) \\ \sin (z+p) & \sin (z+q) & \sin (z+r)\end{array}\right|=\ldots\) (a) \(\sin (x+y+z)\) (b) \(\sin (\mathrm{p}+\mathrm{q}+\mathrm{r})\) (c) 1 (d) 0

\(\mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}\cos \mathrm{x} & 0 & \sin \mathrm{x} \\ 0 & 1 & 0 \\ -\sin \mathrm{x} & 0 & \cos \mathrm{x}\end{array}\right|, \mathrm{g}(\mathrm{y})=\left|\begin{array}{ccc}\cos \mathrm{y} & -\sin \mathrm{y} & 0 \\ \sin \mathrm{y} & \cos \mathrm{y} & 0 \\ 0 & 0 & 1\end{array}\right|\) (i) \(\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(\mathrm{y})=\) (a) \(\mathrm{f}(\mathrm{xy})\) (b) \(\mathrm{f}(\mathrm{x} / \mathrm{y})\) (c) \(\mathrm{f}(\mathrm{x}+\mathrm{y})\) (d) \(\mathrm{f}(\mathrm{x}-\mathrm{y})\) (ii) Which of the following is correct? (a) \([\mathrm{f}(\mathrm{x})]^{-1}=[1 /\\{\mathrm{f}(\mathrm{x})\\}]\) (b) \([\mathrm{f}(\mathrm{x})]^{-1}=-\mathrm{f}(\mathrm{x})\) (c) \([\mathrm{f}(\mathrm{x})]^{-1}=\mathrm{f}(-\mathrm{x})\) (d) \([\mathrm{f}(\mathrm{x})]^{-1}=-\mathrm{f}(-\mathrm{x})\) (iii) \([\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{y})]^{-1}=\) (a) \(\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{g}\left(\mathrm{y}^{-1}\right)\) (b) \(\mathrm{f}\left(\mathrm{y}^{-1}\right) \mathrm{g}\left(\mathrm{x}^{-1}\right)\) (c) \(\mathrm{f}(-\mathrm{x}) \mathrm{g}(-\mathrm{y})\) (d) \(\mathrm{g}(-\mathrm{y}) \mathrm{f}(-\mathrm{x})\)

\(\left|\begin{array}{ccc}(b+c)^{2} & a^{2} & a^{2} \\ b^{2} & (c+a)^{2} & b^{2} \\ c^{2} & c^{2} & (a+b)^{2}\end{array}\right|=k(a b c)(a+b+c)^{3}\), then \(k=\ldots\) (a) (b) - 1 (c) \(-2\) (d) 2

If \(f(x)=\left|\begin{array}{ccc}2 \cos ^{2} x & \sin 2 x & -\sin x \\ \sin 2 x & 2 \sin ^{2} x & \cos x \\ \sin x & -\cos x & 0\end{array}\right|\) then \((\pi / 2) \int_{0}\left[f(x)+f^{\prime}(x)\right] d x=\ldots .\) (a) 1 (b) \(\pi\) (c) 0 (d) \([(1 / 3)-(\pi / 2)]\)

If the equations \(a x+b y+c z=0,4 x+3 y+2 z=0\) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=0\) have non-trivial solution, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in... (a) A.P. (b) G.P. (c) Increasing sequence (d) decreasing sequence.

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free