Chapter 4: Problem 302
If $$ A_{r}=\left|\begin{array}{cc} r & r-1 \\ r-1 & r \end{array}\right| $$ where \(\mathrm{r}\) is a natural number than the value of \(\left.\sqrt{[}^{2013} \sum_{r=1} A_{r}\right]\) is (a) 1 (b) 40 (c) 2012 (d) 2013
Chapter 4: Problem 302
If $$ A_{r}=\left|\begin{array}{cc} r & r-1 \\ r-1 & r \end{array}\right| $$ where \(\mathrm{r}\) is a natural number than the value of \(\left.\sqrt{[}^{2013} \sum_{r=1} A_{r}\right]\) is (a) 1 (b) 40 (c) 2012 (d) 2013
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the equations \(\mathrm{y}+\mathrm{z}=-\mathrm{ax}, \mathrm{z}+\mathrm{x}=-\) by, \(\mathrm{x}+\mathrm{y}=-\mathrm{cz}\) have non trivial solutions, then \([1 /(1-a)]+[1 /(1-b)]+[1 /(1-c)]=\ldots\) (a) 1 (b) 2 (c) \(-1\) (d) \(-2\)
If \(\mathrm{A}=\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & \mathrm{a} & 1\end{array}\right|, \mathrm{A}^{-1}=\left|\begin{array}{ccc}(1 / 2) & -(1 / 2) & (1 / 2) \\ -4 & 3 & \mathrm{c} \\ (5 / 2) & -(3 / 2) & (1 / 2)\end{array}\right|\) then (a) \(\mathrm{a}=2, \mathrm{c}=-(1 / 2)\) (b) \(\mathrm{a}=1, \mathrm{c}=-1\) (c) \(\mathrm{a}=-1, \mathrm{c}=1\) (d) \(\mathrm{a}=(1 / 2), \mathrm{c}=(1 / 2)\)
The system of equations \(\mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}=\lambda \mathrm{x}_{1}\) \(3 \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3}=\lambda \mathrm{x}_{2}\) \(2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3}=\lambda \mathrm{x}_{3}\) can posses a non-trivial solution then \(\lambda=\) (a) 1 (b) 2 (c) 3 (d) 6
The value of determinant \(\left|\begin{array}{ccc}\cos ^{2}[(\pi / 2)+x] & \cos ^{2}[(3 \pi / 2)+x] & \cos ^{2}[(5 \pi / 2)+x] \\ \cos [(\pi / 2)+x] & \cos [(3 \pi / 2)+x] & \cos [(5 \pi / 2)+x] \\ \cos [(\pi / 2)-x] & \cos [(3 \pi / 2)-x] & \cos [(5 \pi / 2)-x]\end{array}\right|\) is \(\ldots \ldots\) (a) 0 (b) \(\cos ^{2}[3 \mathrm{x}-(9 \pi / 2)]\) (c) \(\sin ^{2}[(3 \pi / 2)+\mathrm{x}]\) (d) \(\cos ^{2}[(15 \pi / 2)-\mathrm{x}]\)
Suppose a matrix A satisfies \(\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=0 .\) If \(\mathrm{A}^{5}=\mathrm{aA}+\mathrm{bI}\) then the value of \(2 \mathrm{a}-3 \mathrm{~b}\) must be (a) 4135 (b) 1435 (c) 1453 (d) 3145
What do you think about this solution?
We value your feedback to improve our textbook solutions.