If \(\mathrm{P}, \mathrm{Q}, \mathrm{R}\) represent the angles of an acute angled triangle, no two of them being equal them the value of $$ \left|\begin{array}{ccc} 1 & 1+\cos P & \cos P(1+\cos P) \\ 1 & 1+\cos Q & \cos Q(1+\cos Q) \\ 1 & 1+\cos R & \cos R(1+\cos R) \end{array}\right| \text { is } \ldots $$ (a) positive (b) 0 (c) negative (d) cannot be determined

Short Answer

Expert verified
The value of the determinant is (a) positive.

Step by step solution

01

Write down the formula for a 3x3 determinant

The determinant of a 3x3 matrix is given by the formula: \( \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \) Now, we'll apply this formula to the given matrix.
02

Plug in the values from the given matrix

Plugging the values from the given matrix, we have: \( \begin{vmatrix} 1 & 1 + \cos P & \cos P (1 + \cos P) \\ 1 & 1 + \cos Q & \cos Q (1 + \cos Q) \\ 1 & 1 + \cos R & \cos R (1 + \cos R) \end{vmatrix} \)
03

Evaluate the determinant

Let's evaluate the determinant using the formula from Step 1: \( 1[(1 + \cos Q)(1 + \cos R) - \cos Q(1 + \cos Q)\cos R(1 + \cos R)] \\ - (1 + \cos P)([\cos Q(1 + \cos R) - \cos R(1 + \cos Q)] \\ + (\cos P (1 + \cos P)[\cos Q + \cos Q\cos R - \cos R - \cos R\cos Q] \) Simplifying the expression, we get: \(=(1 + \cos Q + \cos R + \cos Q \cos R) - (\cos Q + \cos Q \cos R + \cos R + \cos R \cos Q) = (1 - \cos Q - \cos R)\) Now, we know that for an acute angled triangle, all angles are less than 90°, so all cosines are positive. Thus, \( 0 < \cos P, \cos Q, \cos R < 1\).
04

Determine the value of the determinant

Given that \(0 < \cos P, \cos Q, \cos R < 1\), we have: \(0 < 1 - \cos Q - \cos R < 2\) So the value of the determinant is positive, between 0 and 2. Therefore, the correct answer is: (a) positive.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Read the following paragraph carefully and answer the following questions. $$ \mathrm{A}=\left|\begin{array}{lll} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{array}\right| $$ if, \(\mathrm{U}_{1}, \mathrm{U}_{2}\) and \(\mathrm{U}_{3}\) are column matrices satisfying $$ \mathrm{AU}_{1}=\left|\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right|, \mathrm{AU}_{2}=\left|\begin{array}{l} 2 \\ 3 \\ 0 \end{array}\right|, \mathrm{AU}_{3}=\left|\begin{array}{l} 2 \\ 3 \\ 1 \end{array}\right| $$ and \(\mathrm{U}\) is \(3 \times 3\) matrix whose columns are \(\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}\), then The sum of the elements of \(\mathrm{U}^{-1}\) is (a) \(-1\) (b) 0 (c) 1 (d) 3

Let \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) be such that \(\mathrm{b}(\mathrm{a}+\mathrm{c}) \neq 0\) If \(\left|\begin{array}{ccc}\mathrm{a} & \mathrm{a}+1 & \mathrm{a}-1 \\\ -\mathrm{b} & \mathrm{b}+1 & \mathrm{~b}-1 \\ \mathrm{c} & \mathrm{c}-1 & \mathrm{c}+1\end{array}\right|+\left|\begin{array}{lll}\mathrm{a}+1 & \mathrm{~b}+1 & \mathrm{c}-1 \\ \mathrm{a}-1 & \mathrm{~b}-1 & \mathrm{c}+1 \\\ (-1)^{\mathrm{n}+2} \mathrm{a} & (-1)^{\mathrm{n}+1} \mathrm{~b} & (-1)^{\mathrm{n}} \mathrm{c}\end{array}\right|=0\) then \(\mathrm{n}\) is (a) Zero (b) any even integer (c) any odd integer (d) any integer

\(\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0\) and the vectors \(\left(1, \mathrm{a}, \mathrm{a}^{2}\right),\left(1, \mathrm{~b}, \mathrm{~b}^{2}\right),\left(1, \mathrm{c}, \mathrm{c}^{2}\right)\) are non-coplanar then \(\mathrm{abc}=\ldots \ldots\) (a) 0 (b) 2 (c) \(-1\) (d) 1

If \(\mathrm{A}=\left|\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right|\) then \(\mathrm{A}^{3}-7 \mathrm{a}^{2}+10 \mathrm{~A}=\ldots\) (a) \(5 \mathrm{I}-\mathrm{A}\) (b) \(5 \mathrm{I}+\mathrm{A}\) (c) \(A-5 I\) (d) \(7 \mathrm{I}\)

If $$ A=\left|\begin{array}{ll} -2 & 3 \\ -1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{3}=\ldots\) (a)I (b) \(\mathrm{O}\) (c) \(-\mathrm{A}\) (d) \(\mathrm{A}+\mathrm{I}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free