If \(A=\left|\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right|\) then \(\mathrm{A}^{\mathrm{T}} \mathrm{A}^{-1}=\) (a) \(\left|\begin{array}{ll}-\cos 2 \mathrm{x} & \sin 2 \mathrm{x} \\ -\sin 2 \mathrm{x} & \cos 2 \mathrm{x}\end{array}\right|\) (b) \(\left|\begin{array}{cc}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right|\) (c) \(\left|\begin{array}{ll}\cos 2 x & \sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right|\) (d) \(\left|\begin{array}{cc}\tan x & 1 \\ -1 & \tan x\end{array}\right|\)

Short Answer

Expert verified
(c) \(\left[\begin{array}{cc}\cos{2x} & \sin{2x} \\ -\sin{2x} & \cos{2x}\end{array}\right]\)

Step by step solution

01

Find the transpose of matrix A

To find the transpose of matrix A, simply swap the rows and columns. If A is the given matrix, then the transpose of A, denoted as A^T, is \[ A^T = \left[\begin{array}{cc}1 & -\tan{x} \\ \tan{x} & 1\end{array}\right] \]
02

Find the determinant of matrix A

The determinant of a 2x2 matrix is calculated using the formula: \[ \det{(A)} = ad - bc \] For the given matrix A, det(A) can be calculated as follows: \[ \det{(A)} = (1)(1) - (\tan{x})(-\tan{x}) = 1 + \tan^2{x} = \sec^2{x} \]
03

Find the inverse of matrix A

To find the inverse of a matrix, we can use the following formula for a 2x2 matrix: \[ A^{-1} = \frac{1}{\det{(A)}} \left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right] \] So using the det(A) we calculated in step 2, we can find the inverse of A as follows: \[ A^{-1} = \frac{1}{\sec^2{x}} \left[\begin{array}{cc}1 & -\tan{x} \\ \tan{x} & 1\end{array}\right] = \left[\begin{array}{cc}\cos^2{x} & -\sin{x}\cos{x} \\ \sin{x}\cos{x} & \cos^2{x}\end{array}\right] \]
04

Multiply the transpose of A with the inverse of A

Now we'll multiply A^T and A^(-1): \[ A^T A^{-1} = \left[\begin{array}{cc}1 & -\tan{x} \\ \tan{x} & 1\end{array}\right] \cdot \left[\begin{array}{cc}\cos^2{x} & -\sin{x}\cos{x} \\ \sin{x}\cos{x} & \cos^2{x}\end{array}\right] = \left[\begin{array}{cc}\cos{2x} & \sin{2x} \\ -\sin{2x} & \cos{2x}\end{array}\right] \]
05

Compare the results with the given options

Looking at our result from step 4, we can see that the matrix we obtained is equal to option (c): \[ \left[\begin{array}{cc}\cos{2x} & \sin{2x} \\ -\sin{2x} & \cos{2x}\end{array}\right] \] So the correct answer is: (c) \(\left[\begin{array}{cc}\cos{2x} & \sin{2x} \\ -\sin{2x} & \cos{2x}\end{array}\right]\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\Delta(x)=\left|\begin{array}{ccc}x^{2}-5 x+3 & 2 x-5 & 3 \\ 3 x^{2}+x+4 & 6 x+1 & 9 \\ 7 x^{2}-6 x+9 & 14 x-6 & 21\end{array}\right|=a x^{3}+b x^{3}+c x+d\) then \(\mathrm{d}=\ldots \ldots\) (a) 156 (b) 187 (c) 119 (d) 141

The value of determinant \(\left|\begin{array}{ccc}\cos ^{2}[(\pi / 2)+x] & \cos ^{2}[(3 \pi / 2)+x] & \cos ^{2}[(5 \pi / 2)+x] \\ \cos [(\pi / 2)+x] & \cos [(3 \pi / 2)+x] & \cos [(5 \pi / 2)+x] \\ \cos [(\pi / 2)-x] & \cos [(3 \pi / 2)-x] & \cos [(5 \pi / 2)-x]\end{array}\right|\) is \(\ldots \ldots\) (a) 0 (b) \(\cos ^{2}[3 \mathrm{x}-(9 \pi / 2)]\) (c) \(\sin ^{2}[(3 \pi / 2)+\mathrm{x}]\) (d) \(\cos ^{2}[(15 \pi / 2)-\mathrm{x}]\)

If the equations \(a x+b y+c z=0,4 x+3 y+2 z=0\) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=0\) have non-trivial solution, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in... (a) A.P. (b) G.P. (c) Increasing sequence (d) decreasing sequence.

\(\left|\begin{array}{ccc}3 \mathrm{x}-8 & 3 & 3 \\ 3 & 3 \mathrm{x}-8 & 3 \\\ 3 & 3 & 3 \mathrm{x}-8\end{array}\right|=0\), then \(\mathrm{x}=\ldots\) (a) \((3 / 2),(3 / 11)\) (b) \((3 / 2),(11 / 3)\) (c) \((2 / 3),(11 / 3)\) (d) \((2 / 3),(3 / 11)\)

\(\mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}\cos \mathrm{x} & 0 & \sin \mathrm{x} \\ 0 & 1 & 0 \\ -\sin \mathrm{x} & 0 & \cos \mathrm{x}\end{array}\right|, \mathrm{g}(\mathrm{y})=\left|\begin{array}{ccc}\cos \mathrm{y} & -\sin \mathrm{y} & 0 \\ \sin \mathrm{y} & \cos \mathrm{y} & 0 \\ 0 & 0 & 1\end{array}\right|\) (i) \(\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(\mathrm{y})=\) (a) \(\mathrm{f}(\mathrm{xy})\) (b) \(\mathrm{f}(\mathrm{x} / \mathrm{y})\) (c) \(\mathrm{f}(\mathrm{x}+\mathrm{y})\) (d) \(\mathrm{f}(\mathrm{x}-\mathrm{y})\) (ii) Which of the following is correct? (a) \([\mathrm{f}(\mathrm{x})]^{-1}=[1 /\\{\mathrm{f}(\mathrm{x})\\}]\) (b) \([\mathrm{f}(\mathrm{x})]^{-1}=-\mathrm{f}(\mathrm{x})\) (c) \([\mathrm{f}(\mathrm{x})]^{-1}=\mathrm{f}(-\mathrm{x})\) (d) \([\mathrm{f}(\mathrm{x})]^{-1}=-\mathrm{f}(-\mathrm{x})\) (iii) \([\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{y})]^{-1}=\) (a) \(\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{g}\left(\mathrm{y}^{-1}\right)\) (b) \(\mathrm{f}\left(\mathrm{y}^{-1}\right) \mathrm{g}\left(\mathrm{x}^{-1}\right)\) (c) \(\mathrm{f}(-\mathrm{x}) \mathrm{g}(-\mathrm{y})\) (d) \(\mathrm{g}(-\mathrm{y}) \mathrm{f}(-\mathrm{x})\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free