\(\mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}\cos \mathrm{x} & 0 & \sin \mathrm{x} \\ 0 & 1 & 0 \\ -\sin \mathrm{x} & 0 & \cos \mathrm{x}\end{array}\right|, \mathrm{g}(\mathrm{y})=\left|\begin{array}{ccc}\cos \mathrm{y} & -\sin \mathrm{y} & 0 \\ \sin \mathrm{y} & \cos \mathrm{y} & 0 \\ 0 & 0 & 1\end{array}\right|\) (i) \(\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(\mathrm{y})=\) (a) \(\mathrm{f}(\mathrm{xy})\) (b) \(\mathrm{f}(\mathrm{x} / \mathrm{y})\) (c) \(\mathrm{f}(\mathrm{x}+\mathrm{y})\) (d) \(\mathrm{f}(\mathrm{x}-\mathrm{y})\) (ii) Which of the following is correct? (a) \([\mathrm{f}(\mathrm{x})]^{-1}=[1 /\\{\mathrm{f}(\mathrm{x})\\}]\) (b) \([\mathrm{f}(\mathrm{x})]^{-1}=-\mathrm{f}(\mathrm{x})\) (c) \([\mathrm{f}(\mathrm{x})]^{-1}=\mathrm{f}(-\mathrm{x})\) (d) \([\mathrm{f}(\mathrm{x})]^{-1}=-\mathrm{f}(-\mathrm{x})\) (iii) \([\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{y})]^{-1}=\) (a) \(\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{g}\left(\mathrm{y}^{-1}\right)\) (b) \(\mathrm{f}\left(\mathrm{y}^{-1}\right) \mathrm{g}\left(\mathrm{x}^{-1}\right)\) (c) \(\mathrm{f}(-\mathrm{x}) \mathrm{g}(-\mathrm{y})\) (d) \(\mathrm{g}(-\mathrm{y}) \mathrm{f}(-\mathrm{x})\)

Short Answer

Expert verified
(i) The correct answer is (c) \(f(x+y)\). (ii) The correct answer is (c) \(f(-x)\). (iii) The correct answer is (d) \(g(-y) f(-x)\).

Step by step solution

01

Compute the product f(x) * f(y)

To compute the product f(x) * f(y), we need to multiply their corresponding matrices: \[ \left(\begin{array}{ccc} \cos x & 0 & \sin x \\ 0 & 1 & 0 \\ -\sin x & 0 & \cos x \end{array}\right) \times \left(\begin{array}{ccc} \cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y \end{array}\right) \] By multiplying, we get: \[ \left(\begin{array}{ccc} \cos x \cos y-\sin x \sin y & 0 & \cos x \sin y+\sin x \cos y \\ 0 & 1 & 0 \\ -\sin x \cos y-\cos x \sin y & 0 & -\sin x \sin y+\cos x \cos y \end{array}\right) \] We recognize this as the matrix f(x+y), so the correct answer is (c) \(f(x+y)\).
02

Compute the inverse of f(x)

To compute the inverse of the matrix f(x): \[ \left(\begin{array}{ccc} \cos x & 0 & \sin x \\ 0 & 1 & 0 \\ -\sin x & 0 & \cos x \end{array}\right)^{-1} \] Since f(x) represents a rotation matrix in 3 dimensions, the inverse matrix is just its transpose: \[ \left(\begin{array}{ccc} \cos x & 0 & -\sin x \\ 0 & 1 & 0 \\ \sin x & 0 & \cos x \end{array}\right) \] This corresponds to the matrix f(-x), so the correct answer is (c) \(f(-x)\).
03

Compute the inverse of f(x) * g(y)

We want to compute the inverse of the matrix product f(x) * g(y): \[ \left(\begin{array}{ccc} \cos x & 0 & \sin x \\ 0 & 1 & 0 \\ -\sin x & 0 & \cos x \end{array}\right) \times \left(\begin{array}{ccc} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{array}\right)^{-1} \] Recall that for a product of invertible matrices A and B, the inverse of their product is given by (AB)^{-1} = B^{-1} A^{-1}. Thus, we just have to compute the inverses we already found in the previous steps: \[ \left(g(y)^{-1}\right) \times \left(f(x)^{-1}\right) = \left(\begin{array}{ccc} \cos y & \sin y & 0 \\ -\sin y & \cos y & 0 \\ 0 & 0 & 1 \end{array}\right) \times \left(\begin{array}{ccc} \cos x & 0 & -\sin x \\ 0 & 1 & 0 \\ \sin x & 0 & \cos x \end{array}\right) \] As we can see, this corresponds to \(g(-y) f(-x)\), so the correct answer is (d) \(g(-y) f(-x)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If $$ \mathrm{D}=\left|\begin{array}{ccc} 1 & 3 \cos \theta & 1 \\ \sin \theta & 1 & 3 \cos \theta \\ 1 & \sin \theta & 1 \end{array}\right| $$ then maximum value of \(\mathrm{D}\) is... (a) 9 (b) 1 (c) 10 (d) 16

\(\left|\begin{array}{ccc}x+1 & x+3 & x+4 \\ x+4 & x+6 & x+8 \\ x+8 & x+10 & x+14\end{array}\right|=\ldots\) (a) 2 (b) \(-2\) (c) 4 (d) \(-4\)

Let $$ \left|\begin{array}{ccc} 1+\mathrm{x} & \mathrm{x} & \mathrm{x}^{2} \\ \mathrm{x} & 1+\mathrm{x} & \mathrm{x}^{2} \\ \mathrm{x}^{2} & \mathrm{x} & 1+\mathrm{x} \end{array}\right|=\mathrm{ax}^{5}+\mathrm{bx}^{4}+\mathrm{cx}^{3}+\mathrm{d} \mathrm{x}^{2}+\mathrm{ex}+\mathrm{f} $$ then match the following columns: \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|} { Column I } & Column II \\ \hline \(1 .\) The Value of \(\mathrm{f}=\ldots .\) & A. 0 \\ 2\. The value of \(\mathrm{e}=\ldots .\) & B. 1 \\ 3\. The value of \(\mathrm{a}+\mathrm{c}=\ldots .\) & C. \(-1\) \\ \(4 .\) The value of \(\mathrm{b}+\mathrm{d}=\ldots .\) & D. 3 \\ \hline \end{tabular} (a) \(1-\mathrm{C}, 2-\mathrm{D}, 3-\mathrm{A}, 4-\mathrm{B}\) (b) \(1-\mathrm{A}, 2-\mathrm{B}, 3-\mathrm{B}, 4-\mathrm{C}\) (c) \(1-\mathrm{B}, 2-\mathrm{D}, 3-\mathrm{C}, 4-\mathrm{B}\) (d) \(1-\mathrm{D}, 2-\mathrm{C}, 3-\mathrm{D}, 4-\mathrm{A}\)

If the system of equations \(x+a y=0, a z+y=0, a x+z=0\) has infinite number of solutions then \(\mathrm{a}=\) (a) 0 (b) 1 (c) \(-1\) (d) \(-2\)

The value of \(\alpha, \beta, \gamma\) when $$ \mathrm{A}=\left|\begin{array}{ccc} 0 & 2 \beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{array}\right| $$ is orthogonal are \(\ldots .\) (a) \(\pm(1 / \sqrt{2}), \pm(1 / \sqrt{6}), \pm(1 / \sqrt{2})\) (b) \(\pm(1 / \sqrt{3}), \pm(1 / \sqrt{2}), \pm(1 / \sqrt{6})\) (c) \(\pm(1 / \sqrt{2}), \pm(1 / \sqrt{6}), \pm(1 / \sqrt{3})\) (d) \(\pm(1 / \sqrt{2}), \pm(1 / \sqrt{2}), \pm(1 / \sqrt{2})\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free