Chapter 4: Problem 320
If maximum and minimum value of the determinant $$ \left|\begin{array}{ccc} 1+\sin ^{2} x & \cos ^{2} x & \sin 2 x \\ \sin ^{2} x & 1+\cos ^{2} x & \sin 2 x \\ \sin ^{2} x & \cos ^{2} x & 1+\sin 2 x \end{array}\right| $$ are \(\mathrm{M}\) and \(\mathrm{m}\) respectively, then match the following columns. \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|} { Column I } & \multicolumn{1}{c|} { Column II } \\\ \hline (1) \(\mathrm{M}^{2}+\mathrm{m}^{2013}=\) & (A) always an odd for \(\mathrm{k} \in \mathrm{N}\) \\ (2) \(\mathrm{M}^{3}-\mathrm{m}^{3}=\) & (B) Being three sides of triangle \\ (3) \(\mathrm{M}^{2 \mathrm{k}}-\mathrm{m}^{2 \mathrm{k}}=\) & (C) 10 \\ (4) \(2 \mathrm{M}-3 \mathrm{~m}, \mathrm{M}+\mathrm{m}, \mathrm{M}+2 \mathrm{~m}\) & (D) 4 \\ & (E) Always an even for \(\mathrm{k} \in \mathrm{N}\) \\ & (F) Does not being three sides of triangle. \\ & (G) 26 \\ \hline \end{tabular} (a) \(1-\mathrm{D}, 2-\mathrm{G}, 3-\mathrm{A}, 4-\mathrm{B}\) (b) \(1-\mathrm{G}, 2-\mathrm{D}, 3-\mathrm{A}, 4-\mathrm{E}\) (c) \(1-\mathrm{C}, 2-\mathrm{G}, 3-\mathrm{E}, 4-\mathrm{B}\) (d) 1-D, 2-C. 3-E. 4-F