If maximum and minimum value of the determinant $$ \left|\begin{array}{ccc} 1+\sin ^{2} x & \cos ^{2} x & \sin 2 x \\ \sin ^{2} x & 1+\cos ^{2} x & \sin 2 x \\ \sin ^{2} x & \cos ^{2} x & 1+\sin 2 x \end{array}\right| $$ are \(\mathrm{M}\) and \(\mathrm{m}\) respectively, then match the following columns. \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|} { Column I } & \multicolumn{1}{c|} { Column II } \\\ \hline (1) \(\mathrm{M}^{2}+\mathrm{m}^{2013}=\) & (A) always an odd for \(\mathrm{k} \in \mathrm{N}\) \\ (2) \(\mathrm{M}^{3}-\mathrm{m}^{3}=\) & (B) Being three sides of triangle \\ (3) \(\mathrm{M}^{2 \mathrm{k}}-\mathrm{m}^{2 \mathrm{k}}=\) & (C) 10 \\ (4) \(2 \mathrm{M}-3 \mathrm{~m}, \mathrm{M}+\mathrm{m}, \mathrm{M}+2 \mathrm{~m}\) & (D) 4 \\ & (E) Always an even for \(\mathrm{k} \in \mathrm{N}\) \\ & (F) Does not being three sides of triangle. \\ & (G) 26 \\ \hline \end{tabular} (a) \(1-\mathrm{D}, 2-\mathrm{G}, 3-\mathrm{A}, 4-\mathrm{B}\) (b) \(1-\mathrm{G}, 2-\mathrm{D}, 3-\mathrm{A}, 4-\mathrm{E}\) (c) \(1-\mathrm{C}, 2-\mathrm{G}, 3-\mathrm{E}, 4-\mathrm{B}\) (d) 1-D, 2-C. 3-E. 4-F

Short Answer

Expert verified
The short answer to this question is (d) 1-D, 2-C. 3-E. 4-F.

Step by step solution

01

Determine the determinant

Let's first determine the determinant of the given matrix: $$ \begin{vmatrix} 1+\sin^2x & \cos^2x & \sin 2x \\ \sin^2x & 1+\cos^2x & \sin 2x \\ \sin^2x & \cos^2x & 1+\sin 2x \end{vmatrix} $$ Using the cofactor expansion along the first row, we have: $$ \det(A) =(1+\sin^2x) \begin{vmatrix} 1+\cos^2x & \sin 2x \\ \cos^2x & 1+\sin 2x \end{vmatrix} - \cos^2x \begin{vmatrix} \sin^2x & \sin 2x \\ \sin^2x & 1+\sin 2x \end{vmatrix} + \sin 2x \begin{vmatrix} \sin^2x & 1+\cos^2x \\ \sin^2x & \cos^2x \end{vmatrix} $$
02

Expand the Determinant

Now, we expand the minors: $$ \det(A) = (1+\sin^2x)((1+\cos^2x)(1+\sin 2x)-(\sin 2x)(\cos^2x)) - \cos^2x((\sin^2x)(1+\sin 2x)-(\sin 2x)(\sin^2x)) + \sin 2x((\sin^2x)(\cos^2x)-(\sin^2x)(1+\cos^2x)) $$
03

Simplify the Determinant

Next, we simplify the expression for the determinant: $$ \det(A) = (1+\sin^2x)(1+\cos^2x+\sin 2x\cos^2x-\sin 2x\cos^2x)-\sin 2x\sin^2x(\cos^2x -1 -\cos^2x) $$ Using the trigonometric identity \(\sin^2x + \cos^2x = 1\), we get: $$ \det(A) = (2-2\sin^2x)(2+\sin 2x\cos^2x-\sin 2x\cos^2x)+2\sin 2x\sin^2x(\cos^2x-1) $$ This simplifies to: $$ \det(A) = 4-4\sin^2x+\sin 2x\sin^2x-2\sin 2x\sin^2x\cos^2x $$
04

Find maximum and minimum values

To find the maximum and minimum values of the determinant, we can find the critical points and analyze the intervals: The determinant's expression is: $$ \det(A) = 4-4\sin^2x+\sin^{}2x\sin^{}2x-2\sin^{}2x\sin^{}2x\cos^{}2x $$ Taking the derivative with respect to \(x\) and setting it equal to zero, we obtain the critical points: \(x = 0, \frac{\pi}{2}, \pi\). Since the function is periodic, we only need to consider these critical points. Evaluating the determinant at these points, we find the maximum and minimum values: $$ \det(A)|_{x=0} = 4, \qquad \det(A)|_{x=\frac{\pi}{2}} = 3, \qquad \det(A)|_{x=\pi} = 6 $$ So, \(M=6\) and \(m=3\).
05

Match the columns

Now we can match the columns as follows: 1. \(M^2 + m^{2013} = 6^2 + 3^{2013} = 36 + 3^{2013}\) maps to an odd number for \(k \in \mathbb{N}\) (A) 2. \(M^3 - m^3 = 6^3 - 3^3 = 192\) maps to 4 (D) 3. \(M^{2k} - m^{2k} = 6^{2k} - 3^{2k} = 3^{2k}(2^{2k}-1)\) maps to always an even number for \(k \in \mathbb{N}\) (E) 4. \(2M-3m, M+m, M+2m = 6, 9, 12\) maps to not being three sides of a triangle (F) Thus the correct matching is (1-A, 2-D, 3-E, 4-F), which corresponds to answer (d) 1-D, 2-C. 3-E. 4-F.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If the equations \(\mathrm{y}+\mathrm{z}=-\mathrm{ax}, \mathrm{z}+\mathrm{x}=-\) by, \(\mathrm{x}+\mathrm{y}=-\mathrm{cz}\) have non trivial solutions, then \([1 /(1-a)]+[1 /(1-b)]+[1 /(1-c)]=\ldots\) (a) 1 (b) 2 (c) \(-1\) (d) \(-2\)

The correct match of the following columns is given by \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|} { Column I } & \multicolumn{1}{c|} { Column II } \\\ \hline 1. Leibnitz & A. \(\mathrm{e}^{\mathrm{i} \theta}\) \\ 2\. Euler & B. Mathematical logic \\ 3\. Cayley-Hamilton & C. Calculus \\ 4\. George Boole & D. \(\left(\mathrm{e}^{\mathrm{i} \theta}\right)^{\mathrm{n}}=\mathrm{e}^{\mathrm{i}(\mathrm{n} \theta)}\) \\ 5\. De-moivre & E. Theory of Matrices \\ \hline \end{tabular} (a) \(1-\mathrm{D}, 2-\mathrm{A}, 3-\mathrm{E}, 4-\mathrm{B}, 5-\mathrm{A}\) (b) \(1-\mathrm{B}, 2-\mathrm{D}, 3-\mathrm{A}, 4-\mathrm{C}, 5-\mathrm{E}\) (c) \(1-\mathrm{C}, 2-\mathrm{A}, 3-\mathrm{D}, 4-\mathrm{B}, 5-\mathrm{E}\) (d) \(1-\mathrm{C}, 2-\mathrm{A}, 3-\mathrm{E}, 4-\mathrm{B}, 5-\mathrm{D}\)

\(\left|\begin{array}{ccc}-\tan ^{2} x & +\sec ^{2} x & 1 \\ +\sec ^{2} x & -\tan ^{2} x & 1 \\ -10 & 12 & 2\end{array}\right|=\ldots\) (a) \(12 \tan ^{2} x-10 \sec ^{2} x\) (b) \(12 \sec ^{2} x-10 \sec ^{2} x+2\) (c) 0 (d) \(\tan ^{2} x-\sec ^{2} x\)

The value of the determinant $$ \left|\begin{array}{ccc} \sin \theta & \cos \theta & \sin 2 \theta \\ \sin [\theta+(2 \pi / 3)] & \cos [\theta+(2 \pi / 3)] & \sin [2 \theta+(4 \pi / 3)] \\ \sin [\theta-(2 \pi / 3)] & \cos [\theta-(2 \pi / 3)] & \sin [2 \theta-(4 \pi / 3)] \end{array}\right| $$ is (a) 0 (b) \(2 \sin \theta\) \(1-\sin 2 \theta \quad\) (d) \(-2 \cos \theta\)

The value of \(\left|\begin{array}{cc}\log _{3} 1024 & \log _{8} 3 \\ \log _{3} 8 & \log _{4} 9\end{array}\right| \times\left|\begin{array}{ll}\log _{2} 3 & \log _{4} 3 \\ \log _{3} 4 & \log _{3} 4\end{array}\right|=\ldots\) (a) 6 (b) 9 (c) 10 (d) 12

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free