Chapter 4: Problem 328
Let \(\lambda\) and \(\alpha\) be real. The system of equations \(\lambda x+(\sin \alpha) y+(\cos \alpha) z=0\) \(x+(\cos \alpha) y+(\sin \alpha) z=0\) \(-x+(\sin \alpha) \mathrm{y}-(\cos \alpha) \mathrm{z}=0\) has no trivial solution. (i) The set of all values of \(\lambda\) is (a) \([-\sqrt{3}, \sqrt{3}]\) (b) \([-\sqrt{2}, \sqrt{2}]\) (c) \([-1,1]\) (d) \([0,(\pi / 2)]\) (ii) For \(\lambda=1, \alpha=\ldots .\) (a) \(\mathrm{n} \pi, \mathrm{n} \pi-(\pi / 4)\) (b) \(2 \mathrm{n} \pi, \mathrm{n} \pi-(\pi / 4)\) (c) \(\mathrm{n} \pi, \mathrm{n} \pi+(\pi / 4)\) (d) \(-\pi,-(3 \pi / 4)\)