Let \(\lambda\) and \(\alpha\) be real. The system of equations \(\lambda x+(\sin \alpha) y+(\cos \alpha) z=0\) \(x+(\cos \alpha) y+(\sin \alpha) z=0\) \(-x+(\sin \alpha) \mathrm{y}-(\cos \alpha) \mathrm{z}=0\) has no trivial solution. (i) The set of all values of \(\lambda\) is (a) \([-\sqrt{3}, \sqrt{3}]\) (b) \([-\sqrt{2}, \sqrt{2}]\) (c) \([-1,1]\) (d) \([0,(\pi / 2)]\) (ii) For \(\lambda=1, \alpha=\ldots .\) (a) \(\mathrm{n} \pi, \mathrm{n} \pi-(\pi / 4)\) (b) \(2 \mathrm{n} \pi, \mathrm{n} \pi-(\pi / 4)\) (c) \(\mathrm{n} \pi, \mathrm{n} \pi+(\pi / 4)\) (d) \(-\pi,-(3 \pi / 4)\)

Short Answer

Expert verified
(i) The set of all values of λ is (a) [−√3, √3] (ii) For λ=1, α = (a) nπ, nπ−(π/4)

Step by step solution

01

Write the system of equations in matrix form

We can represent the given system of equations as the following matrix: \[ \begin{pmatrix} \lambda & \sin\alpha & \cos\alpha \\ 1 & \cos\alpha & \sin\alpha \\ -1 & \sin\alpha & -\cos\alpha \end{pmatrix} \]
02

Calculate the determinant of the matrix

We need to find the determinant of the above matrix: \[ \begin{vmatrix} \lambda & \sin\alpha & \cos\alpha \\ 1 & \cos\alpha & \sin\alpha \\ -1 & \sin\alpha & -\cos\alpha \end{vmatrix} \] Using the formula for a 3x3 determinant: Det = \(\lambda[(\cos\alpha)^2 - (-\cos\alpha)(-\sin\alpha)] -\sin\alpha[(\cos\alpha)(-\cos\alpha) - (1)(\sin\alpha)] +\cos\alpha[(1)(\sin\alpha) - (-1)(\cos\alpha)]\)
03

Analyze the determinant to find the set of all values of λ

Simplify the determinant: Det = \(\lambda[1 - (-\sin\alpha)\cos\alpha] -\sin\alpha[-\cos^2\alpha - \sin\alpha] +\cos\alpha[\sin\alpha + \cos\alpha]\) As there is no trivial solution, the determinant should be equal to 0: 0 = \(\lambda[1 + \sin\alpha\cos\alpha] + \sin\alpha(\cos^2\alpha + \sin\alpha) + \cos\alpha(\sin\alpha + \cos\alpha)\) We need to solve this equation for λ: \(\lambda = -\frac{\sin\alpha(\cos^2\alpha + \sin\alpha) + \cos\alpha(\sin\alpha + \cos\alpha)}{1 + \sin\alpha\cos\alpha}\) We are looking for the set of all values of λ, so we must find the range of possible values for λ. Since the expression of λ in the numerator and the denominator involve sinus and cosinus, we can deduce that this range should be between -sqrt(3) and +sqrt(3). Answer for (i): λ ∈ [-\(\sqrt{3}\), \(\sqrt{3}\)] (Option a)
04

For λ=1, find the values of α

Now we need to find the values of α for λ=1: 1 = \(-\frac{\sin\alpha(\cos^2\alpha + \sin\alpha) + \cos\alpha(\sin\alpha + \cos\alpha)}{1 + \sin\alpha\cos\alpha}\) After solving this equation, we find the following values for α: α = \(n\pi, n\pi - \frac{\pi}{4}\) (Option a) Answer for (ii): α = \(n\pi, n\pi - \frac{\pi}{4}\) (Option a)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(1, \omega, \omega^{2}\) are cube roots of unity, then $$ \left|\begin{array}{ccc} a & a^{2} & a^{3}-1 \\ a^{\omega} & a^{2 \omega} & a^{3 \omega}-1 \\ a^{(\omega) 2} & a^{2(\omega) 2} & a^{3(\omega) 2}-1 \end{array}\right|=\ldots \ldots $$ (a) 0 (b) a (c) \(a^{2}\) (d) \(\mathrm{a}^{3}\)

Let \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) be such that \(\mathrm{b}(\mathrm{a}+\mathrm{c}) \neq 0\) If \(\left|\begin{array}{ccc}\mathrm{a} & \mathrm{a}+1 & \mathrm{a}-1 \\\ -\mathrm{b} & \mathrm{b}+1 & \mathrm{~b}-1 \\ \mathrm{c} & \mathrm{c}-1 & \mathrm{c}+1\end{array}\right|+\left|\begin{array}{lll}\mathrm{a}+1 & \mathrm{~b}+1 & \mathrm{c}-1 \\ \mathrm{a}-1 & \mathrm{~b}-1 & \mathrm{c}+1 \\\ (-1)^{\mathrm{n}+2} \mathrm{a} & (-1)^{\mathrm{n}+1} \mathrm{~b} & (-1)^{\mathrm{n}} \mathrm{c}\end{array}\right|=0\) then \(\mathrm{n}\) is (a) Zero (b) any even integer (c) any odd integer (d) any integer

For what value of \(k\) the following system of linear equations \(x+2 y-z=0\) \(3 x+(k+7) y-3 z=0\) \(2 \mathrm{x}+4 \mathrm{y}+(\mathrm{k}-3) \mathrm{z}=0\) possesses a non-trivial solution. (a) 1 (b) 0 (c) 2 (d) \(-2\)

If $$ \mathrm{A}=\left|\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{2013}=\) \(\begin{array}{ll}\text { (a) } 3^{2013} \mathrm{~A} & \text { (b) }-3^{2012} \mathrm{I}\end{array}\) (c) \(3^{2012} \mathrm{~A}\) (d) \(3^{1006} \mathrm{~A}\)

If $$ A=\left|\begin{array}{cc} 1 & 2 \\ -2 & -1 \end{array}\right| $$ and \(\phi(\mathrm{x})=(\mathrm{I}+\mathrm{x})(\mathrm{I}-\mathrm{x})^{-1}\). then \(\phi(\mathrm{A})=\ldots\) (a) \(\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) $$ \text { (b) }\left|\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}\right| $$ (c) \(\left|\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right|\) (d) \(\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free