If $$ \mathrm{A}=\left|\begin{array}{cc} 1 & 0 \\ -1 & 7 \end{array}\right| $$ and \(A^{2}=8 \mathrm{~A}+\mathrm{kl}_{2}\), then \(\mathrm{k}=\ldots\) (a) 1 (b) \(-1\) (c) 7 (d) \(-7\)

Short Answer

Expert verified
The value of k is \(-7\) (Option d).

Step by step solution

01

STEP 1: Compute A^2

To find A^2, we need to multiply A by itself. Let's use the matrix multiplication rule: A^2 = A * A, where $$ \mathrm{A}=\left|\begin{array}{cc} 1 & 0 \\\ -1 & 7 \end{array}\right| $$ So, $$ A^2 = \left|\begin{array}{cc} 1 & 0 \\ -1 & 7 \end{array}\right| * \left|\begin{array}{cc} 1 & 0 \\ -1 & 7 \end{array}\right| $$
02

STEP 2: Use matrix multiplication rules

Now, let's perform matrix multiplication: $$ A^2 = \left|\begin{array}{cc} (1*1 + 0*(-1)) & (1*0 + 0*7) \\ (-1*1 + 7*(-1)) & (-1*0 + 7*7) \end{array}\right| $$
03

STEP 3: Compute the values

Now we can compute the values inside the matrix: $$ A^2 = \left|\begin{array}{cc} 1 & 0 \\ -8 & 49 \end{array}\right| $$
04

STEP 4: Write down the given equation

Next, let's write the given equation and substitute A^2 with the value we found: A^2 = 8A + kl_2 $$ \left|\begin{array}{cc} 1 & 0 \\ -8 & 49 \end{array}\right| = 8 \left|\begin{array}{cc} 1 & 0 \\ -1 & 7 \end{array}\right| + k \left|\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right| $$
05

STEP 5: Simplify the equation

Now, let's simplify the equation by multiplying the matrices by their respective constants: $$ \left|\begin{array}{cc} 1 & 0 \\ -8 & 49 \end{array}\right| = \left|\begin{array}{cc} 8 & 0 \\ -8 & 56 \end{array}\right| + \left|\begin{array}{cc} k & 0 \\ 0 & k \end{array}\right| $$
06

STEP 6: Find the value of k

By comparing the corresponding elements of the resulting matrices, we can easily find out the value of k: k = 1 - 8 => k = -7 Comparing with the options, we see that our solution matches option (d). Therefore, k = -7 (Option d).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let $$ A=\left|\begin{array}{ccc} 4 & 4 \mathrm{k} & \mathrm{k} \\ 0 & \mathrm{k} & 4 \mathrm{k} \\ 0 & 0 & 4 \end{array}\right| $$ If \(\operatorname{det}\left(\mathrm{A}^{2}\right)=16\) then \(|\mathrm{k}|\) is \(\ldots \ldots\) (a) 1 (b) \((1 / 4)\) (c) 4 (d) \(4^{2}\)

If the equations \(a x+b y+c z=0,4 x+3 y+2 z=0\) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=0\) have non-trivial solution, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in... (a) A.P. (b) G.P. (c) Increasing sequence (d) decreasing sequence.

The homogeneous system of equations \(\left|\begin{array}{ccc}2 & \alpha+\beta+\gamma+\delta & \alpha \beta+\gamma \delta \\ \alpha+\beta+\gamma+\delta & \alpha(\alpha+\beta)(\gamma+\delta) & \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta) \\ \alpha \beta+\gamma \delta & \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta) & 2 \alpha \beta \gamma \delta\end{array}\right|\left|\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\\ \mathrm{z}\end{array}\right|=0\) has non-trivial solutions only if..... (a) \(\alpha+\beta+\gamma+\delta=0\) (b) for any \(\alpha, \beta, \gamma, \delta\) (c) \(\alpha \beta+\gamma \delta=0\) (d) \(\alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta)\)

If $$ A=\left|\begin{array}{ccc} 3 a & b & c \\ b & 3 c & a \\ c & a & 3 b \end{array}\right| $$ \(\mathrm{a}, \mathrm{b}, \mathrm{c} \notin \mathrm{R}, \mathrm{abc}=1\) and \(\mathrm{AA}^{\mathrm{T}}=641\) and \(|\mathrm{A}|>0\), then \(\left(a^{3}+b^{3}+c^{3}\right)=\) (a) 343 (b) 729 (c) 256 (d) 512

If \(\mathrm{A}=\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & \mathrm{a} & 1\end{array}\right|, \mathrm{A}^{-1}=\left|\begin{array}{ccc}(1 / 2) & -(1 / 2) & (1 / 2) \\ -4 & 3 & \mathrm{c} \\ (5 / 2) & -(3 / 2) & (1 / 2)\end{array}\right|\) then (a) \(\mathrm{a}=2, \mathrm{c}=-(1 / 2)\) (b) \(\mathrm{a}=1, \mathrm{c}=-1\) (c) \(\mathrm{a}=-1, \mathrm{c}=1\) (d) \(\mathrm{a}=(1 / 2), \mathrm{c}=(1 / 2)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free