Chapter 4: Problem 329
If $$ \mathrm{A}=\left|\begin{array}{cc} 1 & 0 \\ -1 & 7 \end{array}\right| $$ and \(A^{2}=8 \mathrm{~A}+\mathrm{kl}_{2}\), then \(\mathrm{k}=\ldots\) (a) 1 (b) \(-1\) (c) 7 (d) \(-7\)
Chapter 4: Problem 329
If $$ \mathrm{A}=\left|\begin{array}{cc} 1 & 0 \\ -1 & 7 \end{array}\right| $$ and \(A^{2}=8 \mathrm{~A}+\mathrm{kl}_{2}\), then \(\mathrm{k}=\ldots\) (a) 1 (b) \(-1\) (c) 7 (d) \(-7\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet $$ A=\left|\begin{array}{ccc} 4 & 4 \mathrm{k} & \mathrm{k} \\ 0 & \mathrm{k} & 4 \mathrm{k} \\ 0 & 0 & 4 \end{array}\right| $$ If \(\operatorname{det}\left(\mathrm{A}^{2}\right)=16\) then \(|\mathrm{k}|\) is \(\ldots \ldots\) (a) 1 (b) \((1 / 4)\) (c) 4 (d) \(4^{2}\)
If the equations \(a x+b y+c z=0,4 x+3 y+2 z=0\) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=0\) have non-trivial solution, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in... (a) A.P. (b) G.P. (c) Increasing sequence (d) decreasing sequence.
The homogeneous system of equations \(\left|\begin{array}{ccc}2 & \alpha+\beta+\gamma+\delta & \alpha \beta+\gamma \delta \\ \alpha+\beta+\gamma+\delta & \alpha(\alpha+\beta)(\gamma+\delta) & \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta) \\ \alpha \beta+\gamma \delta & \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta) & 2 \alpha \beta \gamma \delta\end{array}\right|\left|\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\\ \mathrm{z}\end{array}\right|=0\) has non-trivial solutions only if..... (a) \(\alpha+\beta+\gamma+\delta=0\) (b) for any \(\alpha, \beta, \gamma, \delta\) (c) \(\alpha \beta+\gamma \delta=0\) (d) \(\alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta)\)
If $$ A=\left|\begin{array}{ccc} 3 a & b & c \\ b & 3 c & a \\ c & a & 3 b \end{array}\right| $$ \(\mathrm{a}, \mathrm{b}, \mathrm{c} \notin \mathrm{R}, \mathrm{abc}=1\) and \(\mathrm{AA}^{\mathrm{T}}=641\) and \(|\mathrm{A}|>0\), then \(\left(a^{3}+b^{3}+c^{3}\right)=\) (a) 343 (b) 729 (c) 256 (d) 512
If \(\mathrm{A}=\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & \mathrm{a} & 1\end{array}\right|, \mathrm{A}^{-1}=\left|\begin{array}{ccc}(1 / 2) & -(1 / 2) & (1 / 2) \\ -4 & 3 & \mathrm{c} \\ (5 / 2) & -(3 / 2) & (1 / 2)\end{array}\right|\) then (a) \(\mathrm{a}=2, \mathrm{c}=-(1 / 2)\) (b) \(\mathrm{a}=1, \mathrm{c}=-1\) (c) \(\mathrm{a}=-1, \mathrm{c}=1\) (d) \(\mathrm{a}=(1 / 2), \mathrm{c}=(1 / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.