The inverse element of $$ \left|\begin{array}{lll} y & y & y \\ y & y & y \\ y & y & y \end{array}\right| $$ in group $$ M=|| \begin{array}{ccc} x & x & x \\ x & x & x \\ x & x & x \end{array}|/ x \in R, x \neq 0, \quad I=(1 / 3)| \begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}|| \text { w.r.t } $$ matrix multiplication is (a) \(\begin{array}{lll}(1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y}) \\\ (1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y}) \\ (1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y})\end{array} \mid\) (b) \(\left|\begin{array}{lll}(1 / 3 y) & (1 / 3 y) & (1 / 3 y) \\ (1 / 3 y) & (1 / 3 y) & (1 / 3 y) \\ (1 / 3 y) & (1 / 3 y) & (1 / 3 y)\end{array}\right|\) (c) \(\left|\begin{array}{lll}(1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) \\ (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) \\\ (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y})\end{array}\right|\) (d) \(\left|\begin{array}{lll}(1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) \\ (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) \\\ (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y})\end{array}\right|\)

Short Answer

Expert verified
The short answer is: (d) \(\begin{bmatrix} \frac{1}{9y} & \frac{1}{9y} & \frac{1}{9y} \\ \frac{1}{9y} & \frac{1}{9y} & \frac{1}{9y} \\ \frac{1}{9y} & \frac{1}{9y} & \frac{1}{9y} \end{bmatrix}\)

Step by step solution

01

Test Option (a)

Multiply given matrix by option (a) and see if it results in the identity matrix. Given Matrix: \( \begin{bmatrix} y & y & y \\ y & y & y \\ y & y & y \\ \end{bmatrix} \) Option (a): \( \begin{bmatrix} \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \\ \end{bmatrix} \) Multiplication result: \( \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{bmatrix} \) This is not the identity matrix, so option (a) is not the inverse element.
02

Test Option (b)

Multiply given matrix by option (b) and see if it results in the identity matrix. Option (b): \( \begin{bmatrix} \frac{1}{3y} & \frac{1}{3y} & \frac{1}{3y} \\ \frac{1}{3y} & \frac{1}{3y} & \frac{1}{3y} \\ \frac{1}{3y} & \frac{1}{3y} & \frac{1}{3y} \\ \end{bmatrix} \) Multiplication result: \( \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{bmatrix} \) This is not the identity matrix, so option (b) is not the inverse element.
03

Test Option (c)

Multiply given matrix by option (c) and see if it results in the identity matrix. Option (c): \( \begin{bmatrix} \frac{1}{6y} & \frac{1}{6y} & \frac{1}{6y} \\ \frac{1}{6y} & \frac{1}{6y} & \frac{1}{6y} \\ \frac{1}{6y} & \frac{1}{6y} & \frac{1}{6y} \\ \end{bmatrix} \) Multiplication result: \( \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{bmatrix} \) This is not the identity matrix, so option (c) is not the inverse element.
04

Test Option (d)

Multiply given matrix by option (d) and see if it results in the identity matrix. Option (d): \( \begin{bmatrix} \frac{1}{9y} & \frac{1}{9y} & \frac{1}{9y} \\ \frac{1}{9y} & \frac{1}{9y} & \frac{1}{9y} \\ \frac{1}{9y} & \frac{1}{9y} & \frac{1}{9y} \\ \end{bmatrix} \) Multiplication result: \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \) This is the identity matrix, so option (d) is the inverse element. Final answer: (d) \(\begin{bmatrix} \frac{1}{9y} & \frac{1}{9y} & \frac{1}{9y} \\ \frac{1}{9y} & \frac{1}{9y} & \frac{1}{9y} \\ \frac{1}{9y} & \frac{1}{9y} & \frac{1}{9y} \end{bmatrix}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The value of determinant \(\left|\begin{array}{ccc}\cos ^{2}[(\pi / 2)+x] & \cos ^{2}[(3 \pi / 2)+x] & \cos ^{2}[(5 \pi / 2)+x] \\ \cos [(\pi / 2)+x] & \cos [(3 \pi / 2)+x] & \cos [(5 \pi / 2)+x] \\ \cos [(\pi / 2)-x] & \cos [(3 \pi / 2)-x] & \cos [(5 \pi / 2)-x]\end{array}\right|\) is \(\ldots \ldots\) (a) 0 (b) \(\cos ^{2}[3 \mathrm{x}-(9 \pi / 2)]\) (c) \(\sin ^{2}[(3 \pi / 2)+\mathrm{x}]\) (d) \(\cos ^{2}[(15 \pi / 2)-\mathrm{x}]\)

Investigate the values \(\lambda\) and \(\mu\) for the system \(x+2 y+3 z=6\) \(x+3 y+5 z=9\) \(2 \mathrm{x}+5 \mathrm{y}+\lambda \mathrm{z}=\mu\) and correct match the following columns. \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|} { Column I } & \multicolumn{1}{|c|} { Column II } \\\ \hline \(1 . \lambda=8, \mu \neq 15\) & A. Infinity of solutions \\ \(2 . \lambda \neq 8, \mu \in \mathrm{R}\) & B. No solutions \\ \(3 . \lambda=8, \mu=15\) & C. Unique solution \\ \hline \end{tabular} (a) \(1-\mathrm{A}, 2-\mathrm{B}, 3-\mathrm{C}\) (b) \(1-\mathrm{B}, 2-\mathrm{C}, 3-\mathrm{A}\) (c) \(1-\mathrm{C}, 2-\mathrm{A}, 3-\mathrm{B}\) (d) \(1-\mathrm{C}, 2-\mathrm{B}, 3-\mathrm{A}\)

\(\left|\begin{array}{ccc}-\tan ^{2} x & +\sec ^{2} x & 1 \\ +\sec ^{2} x & -\tan ^{2} x & 1 \\ -10 & 12 & 2\end{array}\right|=\ldots\) (a) \(12 \tan ^{2} x-10 \sec ^{2} x\) (b) \(12 \sec ^{2} x-10 \sec ^{2} x+2\) (c) 0 (d) \(\tan ^{2} x-\sec ^{2} x\)

If $$ A=\left|\begin{array}{ccc} 3 a & b & c \\ b & 3 c & a \\ c & a & 3 b \end{array}\right| $$ \(\mathrm{a}, \mathrm{b}, \mathrm{c} \notin \mathrm{R}, \mathrm{abc}=1\) and \(\mathrm{AA}^{\mathrm{T}}=641\) and \(|\mathrm{A}|>0\), then \(\left(a^{3}+b^{3}+c^{3}\right)=\) (a) 343 (b) 729 (c) 256 (d) 512

If \(\mathrm{A}=\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|\) \(8 \mathrm{~A}^{-4}=\) (a) \(145 \overline{\mathrm{A}^{-1}-27 \mathrm{I}}\) (b) \(27 \mathrm{I}-145 \mathrm{~A}^{-1}\) (c) \(29 \mathrm{~A}^{-1}+9 \mathrm{I}\) (d) \(145 \mathrm{~A}^{-1}+27 \mathrm{I}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free