Chapter 4: Problem 332
If $$ A=\left|\begin{array}{cc} 1 & 2 \\ -2 & -1 \end{array}\right| $$ and \(\phi(\mathrm{x})=(\mathrm{I}+\mathrm{x})(\mathrm{I}-\mathrm{x})^{-1}\). then \(\phi(\mathrm{A})=\ldots\) (a) \(\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) $$ \text { (b) }\left|\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}\right| $$ (c) \(\left|\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right|\) (d) \(\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.