If \(\mathrm{A}=\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|\) \(8 \mathrm{~A}^{-4}=\) (a) \(145 \overline{\mathrm{A}^{-1}-27 \mathrm{I}}\) (b) \(27 \mathrm{I}-145 \mathrm{~A}^{-1}\) (c) \(29 \mathrm{~A}^{-1}+9 \mathrm{I}\) (d) \(145 \mathrm{~A}^{-1}+27 \mathrm{I}\)

Short Answer

Expert verified
The short answer is: (b) \(27 \text{I} - 145 A^{-1}\).

Step by step solution

01

Find A^(-1)

To find the inverse of a 2x2 matrix, we can use the formula: \(A^{-1} = \dfrac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\), where \(\text{det}(A) = ad - bc\). We have A: \[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\] Let's find the determinant and the inverse: \(\text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2\) Now, let's find \(A^{-1}\) : \[A^{-1} = \dfrac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}\]
02

Find A^(-4)

To find \(A^{-4}\), we multiply \(A^{-1}\) by itself four times. \(A^{-4} = A^{-1}A^{-1}A^{-1}A^{-1}\) Note that \((A^{-1})^2 = A^{-1} A^{-1}\). To find \((A^{-1})^2\), let's multiply \(A^{-1}\) by itself: \[\begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}\] Now let's find \(A^{-4}\): \[\begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 2 & -5 \end{bmatrix}\]
03

Multiply A^(-4) by 8

Next, let's multiply the result \((A^{-4})\) by 8: \(8A^{-4} = 8 \begin{bmatrix} 1 & -2 \\ 2 & -5 \end{bmatrix} = \begin{bmatrix} 8 & -16 \\ 16 & -40 \end{bmatrix}\)
04

Compare to given options

Now, we have to compare the given options to what we found as \(8A^{-4}\): (a) \(145 \overline{A^{-1}-27I}\) does not match. (b) \(27I - 145A^{-1} = \begin{bmatrix} 27 & 0 \\ 0 & 27 \end{bmatrix} - 145 \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} = \begin{bmatrix} 8 & -16 \\ 16 & -40 \end{bmatrix}\), which matches our result. (c) and (d) do not match our result. Therefore, the correct answer is (b) \(27 \text{I} - 145 A^{-1}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0\) and the vectors \(\left(1, \mathrm{a}, \mathrm{a}^{2}\right),\left(1, \mathrm{~b}, \mathrm{~b}^{2}\right),\left(1, \mathrm{c}, \mathrm{c}^{2}\right)\) are non-coplanar then \(\mathrm{abc}=\ldots \ldots\) (a) 0 (b) 2 (c) \(-1\) (d) 1

If $$ \mathrm{D}=\left|\begin{array}{ccc} 1 & 3 \cos \theta & 1 \\ \sin \theta & 1 & 3 \cos \theta \\ 1 & \sin \theta & 1 \end{array}\right| $$ then maximum value of \(\mathrm{D}\) is... (a) 9 (b) 1 (c) 10 (d) 16

If \(A=\left|\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right|\) then \(\mathrm{A}^{\mathrm{T}} \mathrm{A}^{-1}=\) (a) \(\left|\begin{array}{ll}-\cos 2 \mathrm{x} & \sin 2 \mathrm{x} \\ -\sin 2 \mathrm{x} & \cos 2 \mathrm{x}\end{array}\right|\) (b) \(\left|\begin{array}{cc}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right|\) (c) \(\left|\begin{array}{ll}\cos 2 x & \sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right|\) (d) \(\left|\begin{array}{cc}\tan x & 1 \\ -1 & \tan x\end{array}\right|\)

If \(\mathrm{M}\) is a \(3 \times 3\) matrix, where \(\mathrm{M}^{\mathrm{T}} \mathrm{M}=\mathrm{I}\) and \(\operatorname{det} \mathrm{M}=1\), then \(\operatorname{det}(\mathrm{M}-\mathrm{I})=\) (a) 0 (b) \(-1\) (c) 4 (d) \(-3\)

Let \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) be such that \(\mathrm{b}(\mathrm{a}+\mathrm{c}) \neq 0\) If \(\left|\begin{array}{ccc}\mathrm{a} & \mathrm{a}+1 & \mathrm{a}-1 \\\ -\mathrm{b} & \mathrm{b}+1 & \mathrm{~b}-1 \\ \mathrm{c} & \mathrm{c}-1 & \mathrm{c}+1\end{array}\right|+\left|\begin{array}{lll}\mathrm{a}+1 & \mathrm{~b}+1 & \mathrm{c}-1 \\ \mathrm{a}-1 & \mathrm{~b}-1 & \mathrm{c}+1 \\\ (-1)^{\mathrm{n}+2} \mathrm{a} & (-1)^{\mathrm{n}+1} \mathrm{~b} & (-1)^{\mathrm{n}} \mathrm{c}\end{array}\right|=0\) then \(\mathrm{n}\) is (a) Zero (b) any even integer (c) any odd integer (d) any integer

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free