If $$ \mathrm{A}=\left|\begin{array}{ll} -2 & 3 \\ -1 & 1 \end{array}\right| $$ then \(\mathrm{I}+\mathrm{A}+\mathrm{A}^{2}+\ldots \ldots \infty=\) (a) \(\left|\begin{array}{ll}0 & 3 \\ 1 & 3\end{array}\right|\) (b) \(\quad(1 / 3)\left|\begin{array}{cc}0 & -3 \\ -1 & 3\end{array}\right|\) (c) \((1 / 3)\left|\begin{array}{cc}0 & 3 \\ -1 & 3\end{array}\right|\) (d) undefined

Short Answer

Expert verified
The sum of the infinite geometric series I + A + A^2 + ... is: (d) undefined.

Step by step solution

01

Check if the series converges

To check for the convergence of the geometric series, we need to find the Spectral radius (\(\rho(A)\)) of the matrix A and check if it is smaller than 1. The spectral radius of a matrix is the largest absolute value of its eigenvalues. Let's find the eigenvalues of the matrix A.
02

Find the eigenvalues of matrix A

To find the eigenvalues of matrix A, we look for the values of λ that satisfy the following equation: \((A-\lambda I)=0\), where I is the identity matrix. \(det\begin{vmatrix}-2-\lambda & 3\\ -1 & 1-\lambda\end{vmatrix} = 0\) Expanding the determinant, we get: \((-2 - \lambda)(1 - \lambda) - (-1)(3) = 0\) \(\lambda^2 + \lambda - 2 - 3 + 3= 0\) \(\lambda^2 + \lambda - 2 = 0\) Now, we can solve the quadratic equation for λ: \(\lambda = \frac{-1 \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2}\) Solving for λ, we get two eigenvalues: \(\lambda_1 = 1\), \(\lambda_2 = -2\)
03

Check the spectral radius

Now, we have the eigenvalues, so we can determine the spectral radius as: \(\rho(A) = max\left| \lambda_1, \lambda_2 \right|\) \(\rho(A) = max\left| 1, -2 \right|\) \(\rho(A) = 2\) As the spectral radius \(\rho(A)\) is greater than 1, the series doesn't converge. Therefore, the sum of the series is undefined.
04

Answer

The sum of the infinite geometric series I + A + A^2 + ... is: (d) undefined

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If $$ A=\left|\begin{array}{ll} k & 3 \\ 3 & k \end{array}\right| $$ and \(\left|\mathrm{A}^{3}\right|=343\), then find the value of \(\mathrm{k}=\ldots\) \(\begin{array}{llll}\text { (a) } \pm 1 & \text { (b) } \pm 2 & \text { (c) } \pm 3 & \text { (d) } \pm 4\end{array}\)

If the equations \(x+3 y+z=0,2 x-y-z=0\) \(\mathrm{kx}+2 \mathrm{y}+3 \mathrm{z}=0\) have non-trivial solution then \(\mathrm{k}=\) (a) \((13 / 2)\) (b) \((9 / 2)\) (c) \(-(15 / 2)\) (d) \(-(13 / 2)\)

\(\left|\begin{array}{ccc}3 \mathrm{x}-8 & 3 & 3 \\ 3 & 3 \mathrm{x}-8 & 3 \\\ 3 & 3 & 3 \mathrm{x}-8\end{array}\right|=0\), then \(\mathrm{x}=\ldots\) (a) \((3 / 2),(3 / 11)\) (b) \((3 / 2),(11 / 3)\) (c) \((2 / 3),(11 / 3)\) (d) \((2 / 3),(3 / 11)\)

\(\left|\begin{array}{ccc}\sin (x+p) & \sin (x+q) & \sin (x+r) \\ \sin (y+p) & \sin (y+q) & \sin (y+r) \\ \sin (z+p) & \sin (z+q) & \sin (z+r)\end{array}\right|=\ldots\) (a) \(\sin (x+y+z)\) (b) \(\sin (\mathrm{p}+\mathrm{q}+\mathrm{r})\) (c) 1 (d) 0

Let \(\lambda\) and \(\alpha\) be real. The system of equations \(\lambda x+(\sin \alpha) y+(\cos \alpha) z=0\) \(x+(\cos \alpha) y+(\sin \alpha) z=0\) \(-x+(\sin \alpha) \mathrm{y}-(\cos \alpha) \mathrm{z}=0\) has no trivial solution. (i) The set of all values of \(\lambda\) is (a) \([-\sqrt{3}, \sqrt{3}]\) (b) \([-\sqrt{2}, \sqrt{2}]\) (c) \([-1,1]\) (d) \([0,(\pi / 2)]\) (ii) For \(\lambda=1, \alpha=\ldots .\) (a) \(\mathrm{n} \pi, \mathrm{n} \pi-(\pi / 4)\) (b) \(2 \mathrm{n} \pi, \mathrm{n} \pi-(\pi / 4)\) (c) \(\mathrm{n} \pi, \mathrm{n} \pi+(\pi / 4)\) (d) \(-\pi,-(3 \pi / 4)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free