Chapter 4: Problem 344
If $$ A=\left|\begin{array}{ll} -2 & 3 \\ -1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{3}=\ldots\) (a)I (b) \(\mathrm{O}\) (c) \(-\mathrm{A}\) (d) \(\mathrm{A}+\mathrm{I}\)
Chapter 4: Problem 344
If $$ A=\left|\begin{array}{ll} -2 & 3 \\ -1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{3}=\ldots\) (a)I (b) \(\mathrm{O}\) (c) \(-\mathrm{A}\) (d) \(\mathrm{A}+\mathrm{I}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose a matrix A satisfies \(\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=0 .\) If \(\mathrm{A}^{5}=\mathrm{aA}+\mathrm{bI}\) then the value of \(2 \mathrm{a}-3 \mathrm{~b}\) must be (a) 4135 (b) 1435 (c) 1453 (d) 3145
If $$ A_{r}=\left|\begin{array}{cc} r & r-1 \\ r-1 & r \end{array}\right| $$ where \(\mathrm{r}\) is a natural number than the value of \(\left.\sqrt{[}^{2013} \sum_{r=1} A_{r}\right]\) is (a) 1 (b) 40 (c) 2012 (d) 2013
If \(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots\) are in GP, then $$ \left|\begin{array}{ccc} \log a_{n} & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{array}\right|=\ldots \ldots $$ (a) 0 (b) 1 (c) 2 (d) 4
If \(\mathrm{D}_{1}=\left|\begin{array}{ccc}\mathrm{x} & \mathrm{a} & \mathrm{a} \\\ \mathrm{a} & \mathrm{x} & \mathrm{a} \\ \mathrm{a} & \mathrm{a} & \mathrm{x}\end{array}\right|\) and \(\mathrm{D}_{2}=\left|\begin{array}{ll}\mathrm{x} & \mathrm{a} \\ \mathrm{a} & \mathrm{x}\end{array}\right|\), then... (a) \(D_{1}=3\left(\mathrm{D}_{2}\right)^{(3 / 2)}\) (b) \(D_{1}=3 \mathrm{D}_{2}^{2}\) (c) \((\mathrm{d} / \mathrm{dx})\left(\mathrm{D}_{1}\right)=3 \mathrm{D}_{2}^{2}\) (d) \((\mathrm{d} / \mathrm{dx})\left(\mathrm{D}_{1}\right)=3 \mathrm{D}_{2}\)
If the equations \(\mathrm{y}+\mathrm{z}=-\mathrm{ax}, \mathrm{z}+\mathrm{x}=-\) by, \(\mathrm{x}+\mathrm{y}=-\mathrm{cz}\) have non trivial solutions, then \([1 /(1-a)]+[1 /(1-b)]+[1 /(1-c)]=\ldots\) (a) 1 (b) 2 (c) \(-1\) (d) \(-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.