If $$ A=\left|\begin{array}{ll} -2 & 3 \\ -1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{3}=\ldots\) (a)I (b) \(\mathrm{O}\) (c) \(-\mathrm{A}\) (d) \(\mathrm{A}+\mathrm{I}\)

Short Answer

Expert verified
The short answer is: \(A^{3} = I\), so the answer is (a).

Step by step solution

01

Matrix A

Write down the given matrix A: \[ A=\left|\begin{array}{ll} -2 & 3 \\ -1 & 1 \end{array}\right| \]
02

First multiplication

Multiply matrix A by itself (A*A): \[ A^{2} = A*A =\left|\begin{array}{ll} -2 & 3 \\ -1 & 1 \end{array}\right| * \left|\begin{array}{ll} -2 & 3 \\ -1 & 1 \end{array}\right| \] To multiply these matrices, use the following formula for each element in the result: \((A^2)_{ij} = \sum_{k=1}^{n} (A_{ik} * A_{kj})\) Now perform the multiplication: \[ A^{2} = \left|\begin{array}{ll} (-2)*(-2) + 3*(-1) & (-2)*3 + 3*1\\ (-1)*(-2) + 1*(-1) & (-1)*3 + 1*1 \end{array}\right| \] Calculate the values within the resulting matrix: \[ A^{2} = \left|\begin{array}{ll} 4 - 3 & -6 + 3\\ 2 - 1 & -3 + 1 \end{array}\right| \] And the result becomes: \[ A^{2} = \left|\begin{array}{ll} 1 & -3\\ 1 & -2 \end{array}\right| \]
03

Second multiplication

Now multiply matrix \(A^2\) by matrix A to find \(A^3\): \[ A^{3} = A^{2} * A =\left|\begin{array}{ll} 1 & -3 \\ 1 & -2 \end{array}\right| * \left|\begin{array}{ll} -2 & 3 \\ -1 & 1 \end{array}\right| \] Now perform the multiplication as previously done for A*A: \[ A^{3} = \left|\begin{array}{ll} (1)*(-2) -3*(-1) & 1*3 -3*1\\ (1)*(-2) -2*(-1) & 1*3 -2*1 \end{array}\right| \] Calculate the values within the resulting matrix: \[ A^{3} = \left|\begin{array}{ll} -2 + 3 & 3 - 3\\ -2 + 2 & 3 - 2 \end{array}\right| \] Finally, we have the matrix \(A^3\): \[ A^{3} = \left|\begin{array}{ll} 1 & 0\\ 0 & 1 \end{array}\right| \] Now, compare this result to the given options: (a) I is the identity matrix, \[I=\left|\begin{array}{ll}1 & 0\\0 & 1\end{array}\right|\] (b) O is the zero matrix, \[O=\left|\begin{array}{ll}0 & 0\\0 & 0\end{array}\right|\] (c) -A is the negation of matrix A, \[-A=\left|\begin{array}{ll}2 & -3\\1 & -1\end{array}\right|\] (d) A + I is the sum of matrices A and I, \[ A + I=\left|\begin{array}{ll}-1 & 3\\-1 & 2\end{array}\right|\] Comparing the result with the options, we can see that the correct answer is: \(A^{3} = I\), so the answer is (a).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a matrix A satisfies \(\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=0 .\) If \(\mathrm{A}^{5}=\mathrm{aA}+\mathrm{bI}\) then the value of \(2 \mathrm{a}-3 \mathrm{~b}\) must be (a) 4135 (b) 1435 (c) 1453 (d) 3145

If $$ A_{r}=\left|\begin{array}{cc} r & r-1 \\ r-1 & r \end{array}\right| $$ where \(\mathrm{r}\) is a natural number than the value of \(\left.\sqrt{[}^{2013} \sum_{r=1} A_{r}\right]\) is (a) 1 (b) 40 (c) 2012 (d) 2013

If \(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots\) are in GP, then $$ \left|\begin{array}{ccc} \log a_{n} & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{array}\right|=\ldots \ldots $$ (a) 0 (b) 1 (c) 2 (d) 4

If \(\mathrm{D}_{1}=\left|\begin{array}{ccc}\mathrm{x} & \mathrm{a} & \mathrm{a} \\\ \mathrm{a} & \mathrm{x} & \mathrm{a} \\ \mathrm{a} & \mathrm{a} & \mathrm{x}\end{array}\right|\) and \(\mathrm{D}_{2}=\left|\begin{array}{ll}\mathrm{x} & \mathrm{a} \\ \mathrm{a} & \mathrm{x}\end{array}\right|\), then... (a) \(D_{1}=3\left(\mathrm{D}_{2}\right)^{(3 / 2)}\) (b) \(D_{1}=3 \mathrm{D}_{2}^{2}\) (c) \((\mathrm{d} / \mathrm{dx})\left(\mathrm{D}_{1}\right)=3 \mathrm{D}_{2}^{2}\) (d) \((\mathrm{d} / \mathrm{dx})\left(\mathrm{D}_{1}\right)=3 \mathrm{D}_{2}\)

If the equations \(\mathrm{y}+\mathrm{z}=-\mathrm{ax}, \mathrm{z}+\mathrm{x}=-\) by, \(\mathrm{x}+\mathrm{y}=-\mathrm{cz}\) have non trivial solutions, then \([1 /(1-a)]+[1 /(1-b)]+[1 /(1-c)]=\ldots\) (a) 1 (b) 2 (c) \(-1\) (d) \(-2\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free