Chapter 5: Problem 352
If \(a_{n}={ }^{n} \sum_{r=0}\left[1 /\left({ }^{\mathrm{r}} \mathrm{C}_{\mathrm{n}}\right)\right]\), then \(^{\mathrm{n}} \sum_{\mathrm{r}=0}\left[\mathrm{r} /\left({ }^{\mathrm{r}} \mathrm{C}_{\mathrm{n}}\right)\right]\) equals (a) \((\mathrm{n}-1) \mathrm{a}_{\mathrm{n}}\) (b) n \(\mathrm{a}_{\mathrm{n}}\) (c) \((1 / 2) \mathrm{n} \mathrm{a}_{\mathrm{n}}\) (d) None of these