Chapter 5: Problem 394
If \({ }^{\mathrm{n}} \mathrm{C}_{4},{ }^{\mathrm{n}} \mathrm{C}_{5}\) and \({ }^{\mathrm{n}} \mathrm{C}_{6}\) are in A.P then the value of \(\mathrm{n}\) can be (a) 14 (b) 11 (c) 9 (d) 5
Chapter 5: Problem 394
If \({ }^{\mathrm{n}} \mathrm{C}_{4},{ }^{\mathrm{n}} \mathrm{C}_{5}\) and \({ }^{\mathrm{n}} \mathrm{C}_{6}\) are in A.P then the value of \(\mathrm{n}\) can be (a) 14 (b) 11 (c) 9 (d) 5
All the tools & learning materials you need for study success - in one app.
Get started for freeThe number of ways of distributing 8 identical balls in 3 distinct boxes so that no box is empty is (a) 5 (b) \({ }^{8} \mathrm{C}_{3}\) (c) 38 (d) 21
If \({ }^{189} \mathrm{C}_{35}+{ }^{189} \mathrm{C}_{\mathrm{x}}={ }^{190} \mathrm{C}_{\mathrm{x}}\) then \(\mathrm{x}\) is equal to (a) 34 (b) 35 (c) 36 (d) 37
The number of ways of dividing 15 men and 15 women into 15 couples each consisting of a man and a woman is (a) 1240 (b) 1840 (c) 1820 (d) 2005
If \(\left(1 /{ }^{4} \mathrm{C}_{\mathrm{n}}\right)=\left(1 /{ }^{5} \mathrm{C}_{\mathrm{n}}\right)+\left(1 /{ }^{6} \mathrm{C}_{\mathrm{n}}\right)\) then value of \(\mathrm{n}\) is (a) 3 (b) 4 (c) 0 (d) none of these
The average of the four digits numbers that can be formed by using each of the digits \(3,5,7\), and 9 exactly once in each number is (a) 4444 (b) 5555 (c) 6666 (d) 7777
What do you think about this solution?
We value your feedback to improve our textbook solutions.