Chapter 5: Problem 401
The number of straight lines that can be drawn out of 10 points of which 7 are collinear is (a) 22 (b) 23 (c) 24 (d) 25
Chapter 5: Problem 401
The number of straight lines that can be drawn out of 10 points of which 7 are collinear is (a) 22 (b) 23 (c) 24 (d) 25
All the tools & learning materials you need for study success - in one app.
Get started for freeThe number of five digit number that can be formed by using \(1,2,3\) only, such that exactly three digit of the formed numbers are same is (a) 30 (b) 60 (c) 90 (d) 120
There are 3 copies each of 4 different books. The number of ways they can be arranged in a shelf is (a) 369600 (b) 400400 (c) 420600 (d) 440720
If \(a_{n}={ }^{n} \sum_{r=0}\left[1 /\left({ }^{\mathrm{r}} \mathrm{C}_{\mathrm{n}}\right)\right]\), then \(^{\mathrm{n}} \sum_{\mathrm{r}=0}\left[\mathrm{r} /\left({ }^{\mathrm{r}} \mathrm{C}_{\mathrm{n}}\right)\right]\) equals (a) \((\mathrm{n}-1) \mathrm{a}_{\mathrm{n}}\) (b) n \(\mathrm{a}_{\mathrm{n}}\) (c) \((1 / 2) \mathrm{n} \mathrm{a}_{\mathrm{n}}\) (d) None of these
If \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}\) and \({ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}+1}\), then the value of \(\mathrm{n}\) is (a) 3 (b) 4 (c) 2 (d) 5
The no of ways in which 10 persons can go in two cars so that there may be 5 in each car, supposing that two particular persons will not go in the same car is: (a) \((1 / 2)\left({ }^{10} \mathrm{C}_{5}\right)\) (b) \((1 / 2)\left({ }^{8} \mathrm{C}_{5}\right)\) (c) \(2\left({ }^{8} \mathrm{C}_{4}\right)\) (d) \({ }^{8} \mathrm{C}_{4}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.