Chapter 5: Problem 421
The number of 9 digit numbers formed using the digit 223355888 such that odd digits occupy even places is (a) 16 (b) 36 (c) 60 (d) 80
Chapter 5: Problem 421
The number of 9 digit numbers formed using the digit 223355888 such that odd digits occupy even places is (a) 16 (b) 36 (c) 60 (d) 80
All the tools & learning materials you need for study success - in one app.
Get started for free12 Persons are to be arranged to a round table, If two particular persons among them are not to be side by side, the total number of arrangements is : (a) \(9(10 !)\) (b) \(2(10) !\) (c) \(45(\overline{8 !)}\) (d) \(10 !\)
If \(\left(1 /{ }^{4} \mathrm{C}_{\mathrm{n}}\right)=\left(1 /{ }^{5} \mathrm{C}_{\mathrm{n}}\right)+\left(1 /{ }^{6} \mathrm{C}_{\mathrm{n}}\right)\) then value of \(\mathrm{n}\) is (a) 3 (b) 4 (c) 0 (d) none of these
If \(500 !=2^{\mathrm{m}} \times\) an integer, then (a) \(\mathrm{m}=494\) (b) \(m=496\) (c) It is equivalent to number of \(n\) is \(400 !\) is \(=2^{n} \times\) an integer (d) \(\mathrm{m}={ }^{500} \mathrm{C}_{2}\)
12 boys and 2 girls are to be seated in a row such that there are at least 3 boys between the 2 girls. The number of ways this can be done is \(\mathrm{m} .12 !\) where \(\mathrm{m}=\) (a) \(2 \cdot{ }^{12} \mathrm{C}_{6}\) (b) 20 (c) \({ }^{11} \mathrm{P}_{2}\) (d) \({ }^{11} \mathrm{C}_{2}\)
The straight lines \(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\) are parallel and lie in the same plane. A total number of \(m\) points are taken on \(I_{1}, n\) points on \(\mathrm{I}_{2}, \mathrm{k}\) points on \(\mathrm{I}_{3}\). The maximum number of triangles formed with vertices at these points are (a) \(^{\mathrm{m}+\mathrm{n}+\mathrm{k}} \mathrm{C}_{3}\) (b) \({ }^{\mathrm{m}+\mathrm{n}+\overline{\mathrm{k}} \mathrm{C}_{3}-{ }^{\mathrm{m}}} \mathrm{C}_{3}-{ }^{\mathrm{n}} \mathrm{C}_{3}-{ }^{\mathrm{k}} \mathrm{C}_{3}\) (c) \({ }^{\mathrm{m}} \mathrm{C}_{3}+{ }^{\mathrm{n}} \mathrm{C}_{3}+{ }^{\mathrm{k}} \mathrm{C}_{3}\) (d) \(m+n+k-{ }^{m+n+k} C_{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.