Chapter 5: Problem 426
The number of positive integer solution of the equation \((\mathrm{x} / 99)=[\mathrm{x} /(101)]\) is (a) 2500 (b) 2499 (c) 1729 (d) 1440
Chapter 5: Problem 426
The number of positive integer solution of the equation \((\mathrm{x} / 99)=[\mathrm{x} /(101)]\) is (a) 2500 (b) 2499 (c) 1729 (d) 1440
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{p}+\mathrm{q}=1\) then \(^{\mathrm{n}} \sum_{\mathrm{r}=0} \mathrm{r} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{p}^{\mathrm{r}} \cdot \mathrm{q}^{\mathrm{n}-\mathrm{r}}\) is equal to (a) 1 (b) \(\mathrm{np}\) (c) npq (d) 0
If \({ }^{\mathrm{n}} \mathrm{C}_{4},{ }^{\mathrm{n}} \mathrm{C}_{5}\) and \({ }^{\mathrm{n}} \mathrm{C}_{6}\) are in A.P then the value of \(\mathrm{n}\) can be (a) 14 (b) 11 (c) 9 (d) 5
The straight lines \(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\) are parallel and lie in the same plane. A total number of \(m\) points are taken on \(I_{1}, n\) points on \(\mathrm{I}_{2}, \mathrm{k}\) points on \(\mathrm{I}_{3}\). The maximum number of triangles formed with vertices at these points are (a) \(^{\mathrm{m}+\mathrm{n}+\mathrm{k}} \mathrm{C}_{3}\) (b) \({ }^{\mathrm{m}+\mathrm{n}+\overline{\mathrm{k}} \mathrm{C}_{3}-{ }^{\mathrm{m}}} \mathrm{C}_{3}-{ }^{\mathrm{n}} \mathrm{C}_{3}-{ }^{\mathrm{k}} \mathrm{C}_{3}\) (c) \({ }^{\mathrm{m}} \mathrm{C}_{3}+{ }^{\mathrm{n}} \mathrm{C}_{3}+{ }^{\mathrm{k}} \mathrm{C}_{3}\) (d) \(m+n+k-{ }^{m+n+k} C_{3}\)
The no, of ways in which ten candidates \(\mathrm{A}_{1}, \mathrm{~A}_{2} \ldots \mathrm{A}_{10}\) can be ranked, if \(\mathrm{A}_{1}\) is always above \(\mathrm{A}_{2}\) is (a) \(2 \cdot 8 !\) (b) \(9 !\) (c) \(10 !\) (d) \(5 \cdot 9 !\)
If \(a_{n}={ }^{n} \sum_{r=0}\left[1 /\left({ }^{\mathrm{r}} \mathrm{C}_{\mathrm{n}}\right)\right]\), then \(^{\mathrm{n}} \sum_{\mathrm{r}=0}\left[\mathrm{r} /\left({ }^{\mathrm{r}} \mathrm{C}_{\mathrm{n}}\right)\right]\) equals (a) \((\mathrm{n}-1) \mathrm{a}_{\mathrm{n}}\) (b) n \(\mathrm{a}_{\mathrm{n}}\) (c) \((1 / 2) \mathrm{n} \mathrm{a}_{\mathrm{n}}\) (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.