Chapter 5: Problem 439
4 boys picked up 30 mangoes. In how many ways can they divide them, if all mangoes be identical (a) \({ }^{33} \mathrm{C}_{4}\) (b) \({ }^{33} \mathrm{C}_{2}\) (c) 5456 (d) 6554 .
Chapter 5: Problem 439
4 boys picked up 30 mangoes. In how many ways can they divide them, if all mangoes be identical (a) \({ }^{33} \mathrm{C}_{4}\) (b) \({ }^{33} \mathrm{C}_{2}\) (c) 5456 (d) 6554 .
All the tools & learning materials you need for study success - in one app.
Get started for freeThe vertices of a regular polygon of 12 sides are joined to form triangles. The number of triangles which do not have their sides as the sides of the polygon is (a) 96 (b) 108 (c) 112 (d) 220
The total number of permutations of \(\mathrm{n}(\mathrm{n}>1\) ) different things taken not more than \(\mathrm{r}\) at a time, when each things may be repeated any number of times is (a) \(\left[\left\\{\mathrm{n}\left(\mathrm{n}^{\mathrm{n}}-1\right)\right\\} /\\{\mathrm{n}-1\\}\right]\) (b) \(\left[\left\\{\left(\mathrm{n}^{\mathrm{r}}-1\right)\right\\} /\\{\mathrm{n}-1\\}\right]\) (c) \(\left[\left\\{n\left(n^{r}-1\right)\right\\} /\\{n-1\\}\right]\) (d) \([\\{n(n-r)\\} /\\{n-1\\}]\)
If \(\mathrm{p}+\mathrm{q}=1\) then \(^{\mathrm{n}} \sum_{\mathrm{r}=0} \mathrm{r} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{p}^{\mathrm{r}} \cdot \mathrm{q}^{\mathrm{n}-\mathrm{r}}\) is equal to (a) 1 (b) \(\mathrm{np}\) (c) npq (d) 0
Let \(\mathrm{A}\) be a set with \(\mathrm{n}\) elements. The number of onto functions from \(\mathrm{A}\) to \(\mathrm{A}\) is (a) \(n^{n}\) (b) \(\mathrm{n}^{\mathrm{n}}-\mathrm{n} !\) (c) \(\left(\mathrm{n}^{\mathrm{n}} / \mathrm{n} !\right)\) (d) \(\mathrm{n} !\)
If the letters of the word SACHIN are arranged in all possible ways and these words are written in dictionary order then the word SACHIN appears at serial number (a) 600 (b) 601 (c) 602 (d) 603
What do you think about this solution?
We value your feedback to improve our textbook solutions.