Chapter 6: Problem 457
For all \(n \in N-\\{1\\}, 7^{2 n}-48 n-1\) is divisible by (a) 25 (b) 26 (c) 1234 (d) 2304
Chapter 6: Problem 457
For all \(n \in N-\\{1\\}, 7^{2 n}-48 n-1\) is divisible by (a) 25 (b) 26 (c) 1234 (d) 2304
All the tools & learning materials you need for study success - in one app.
Get started for freeFor all \(n \geq 2, n^{2}\left(n^{4}-1\right)\) is divisible by (a) 60 (b) 50 (c) 40 (d) 70
By principle of mathematical induction, \(\forall \mathrm{n} \subset \mathrm{N}, \cos \theta \cos 2 \theta \cos 4 \theta \ldots \cos \left[\left(2^{\mathrm{n}-1}\right) \theta\right]=\) (a) \(\left[\left(\sin 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (b) \(\left[\left(\cos 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (c) \(\left[\left(\sin 2^{\mathrm{n}} \theta\right) /\left(2^{\mathrm{n}-1} \sin \theta\right)\right]\) (d) None of these
\(10^{\mathrm{n}}+3\left(4^{\mathrm{n}+2}\right)+5\) is divisible by \((\mathrm{n} \in \mathrm{N})\) (a) 7 (b) 5 (c) 9 (d) 17
The greatest positive integer, which divides \((\mathrm{n}+2)(\mathrm{n}+3)\) \((n+4)(n+5)(n+6)\) for all \(\forall n \in N\), is (a) 120 (b) 4 (c) 240 (d) 24
If matrix \(\mathrm{A}=\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|\) and \(\mathrm{I}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) then which one of the following holds for all \(n \in N\). (use principle of mathematical Induction) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}-(\mathrm{n}-1) \mathrm{I}\) (b) \(\mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (b) \(A^{n}=2^{n-1} \cdot A-(n-1) I\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.