Chapter 6: Problem 459
For all \(n \geq 2, n^{2}\left(n^{4}-1\right)\) is divisible by (a) 60 (b) 50 (c) 40 (d) 70
Chapter 6: Problem 459
For all \(n \geq 2, n^{2}\left(n^{4}-1\right)\) is divisible by (a) 60 (b) 50 (c) 40 (d) 70
All the tools & learning materials you need for study success - in one app.
Get started for freeBy principle of mathematical induction, \(\forall \mathrm{n} \subset \mathrm{N}, \cos \theta \cos 2 \theta \cos 4 \theta \ldots \cos \left[\left(2^{\mathrm{n}-1}\right) \theta\right]=\) (a) \(\left[\left(\sin 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (b) \(\left[\left(\cos 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (c) \(\left[\left(\sin 2^{\mathrm{n}} \theta\right) /\left(2^{\mathrm{n}-1} \sin \theta\right)\right]\) (d) None of these
The inequality \(\mathrm{n} !>2^{\mathrm{n}-1}\) is true for (a) \(n>2, n \in N\) (b) \(n<2\) (c) \(\mathrm{n} \in \mathrm{N}\) (d) None of these
\(\mathrm{S}_{\mathrm{n}}=2 \cdot 7^{\mathrm{n}}+3.5^{\mathrm{n}}-5, \mathrm{n} \in \mathrm{N}\) is divisible by the multiple of (a) 5 (b) 7 (c) 24 (d) None of these
If \(\mathrm{P}(\mathrm{n})\) is a statement such that \(\mathrm{P}(3)\) is true. Assuming \(\mathrm{P}(\mathrm{k})\) is true \(\Rightarrow \mathrm{P}(\mathrm{k}+1)\) is true for all \(\mathrm{k} \geq 3\) then \(\mathrm{P}(\mathrm{n})\) is true (a) for all \(n\) (b) for \(n \geq 3\) (c) for \(\mathrm{n} \geq 4\) (c) none of this
The remainder, when \(5^{99}\) is divided by 13, is (a) 6 (b) 8 (c) 9 (d) 10
What do you think about this solution?
We value your feedback to improve our textbook solutions.