Chapter 6: Problem 466
By principle of mathematical induction, \(\forall \mathrm{n} \in \mathrm{N}\), \(5^{2 \mathrm{n}+1}+3^{\mathrm{n}+2} \cdot 2^{\mathrm{n}-1}\) is divisible by (a) 19 (b) 18 (c) 17 (d) 14
Chapter 6: Problem 466
By principle of mathematical induction, \(\forall \mathrm{n} \in \mathrm{N}\), \(5^{2 \mathrm{n}+1}+3^{\mathrm{n}+2} \cdot 2^{\mathrm{n}-1}\) is divisible by (a) 19 (b) 18 (c) 17 (d) 14
All the tools & learning materials you need for study success - in one app.
Get started for freeThe product of three consecutive natural numbers is divisible by (a) 6 (b) 5 (c) 7 (d) 4
For each \(\mathrm{n} \in \mathrm{N}, 10^{2 \mathrm{n}-1}+1\) is divisible by (a) 11 (b) 13 (c) 9 (d) none of these
If \(\mathrm{P}(\mathrm{n}): 1+3+5+\ldots \ldots+(2 \mathrm{n}-1)=\mathrm{n}^{2}\) is (a) True for \(\mathrm{n}>1\) (b) True for all \(\mathrm{n} \in \mathrm{N}\) (c) True for no \(\mathrm{n}\) (d) None of these
If \(\mathrm{P}(\mathrm{n}): 3^{\mathrm{n}}<\mathrm{n} !, \mathrm{n} \in \mathrm{N}\), then \(\mathrm{P}(\mathrm{n})\) is true (a) for \(\mathrm{n} \geq 6\) (b) for \(n \geq 7, n \in N\) (c) for \(n \geq 3\) (d) for all \(n\)
The remainder, when \(5^{99}\) is divided by 13, is (a) 6 (b) 8 (c) 9 (d) 10
What do you think about this solution?
We value your feedback to improve our textbook solutions.