Chapter 6: Problem 466
By principle of mathematical induction, \(\forall \mathrm{n} \in \mathrm{N}\), \(5^{2 \mathrm{n}+1}+3^{\mathrm{n}+2} \cdot 2^{\mathrm{n}-1}\) is divisible by (a) 19 (b) 18 (c) 17 (d) 14
Chapter 6: Problem 466
By principle of mathematical induction, \(\forall \mathrm{n} \in \mathrm{N}\), \(5^{2 \mathrm{n}+1}+3^{\mathrm{n}+2} \cdot 2^{\mathrm{n}-1}\) is divisible by (a) 19 (b) 18 (c) 17 (d) 14
All the tools & learning materials you need for study success - in one app.
Get started for freeFor each \(\mathrm{n} \in \mathrm{N}, 10^{2 \mathrm{n}-1}+1\) is divisible by (a) 11 (b) 13 (c) 9 (d) none of these
By principle of mathematical induction, \(\forall \mathrm{n} \subset \mathrm{N}, \cos \theta \cos 2 \theta \cos 4 \theta \ldots \cos \left[\left(2^{\mathrm{n}-1}\right) \theta\right]=\) (a) \(\left[\left(\sin 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (b) \(\left[\left(\cos 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (c) \(\left[\left(\sin 2^{\mathrm{n}} \theta\right) /\left(2^{\mathrm{n}-1} \sin \theta\right)\right]\) (d) None of these
The greatest positive integer, which divides \((\mathrm{n}+2)(\mathrm{n}+3)\) \((n+4)(n+5)(n+6)\) for all \(\forall n \in N\), is (a) 120 (b) 4 (c) 240 (d) 24
For each \(n \in N, 3^{2 n}-1\) is divisible by (a) 8 (b) 16 (c) 32 (d) None of these
The smallest positive integer \(\mathrm{n}\) for which \(\mathrm{n} !<\\{(\mathrm{n}+1) / 2\\}^{\mathrm{n}}\) holds, is
What do you think about this solution?
We value your feedback to improve our textbook solutions.