Chapter 6: Problem 468
For all \(n \in N, a^{n}-b^{n}\) is always divisible by \((a\) and \(b\) are distinct rational numbers) (a) \(2 \mathrm{a}-\mathrm{b}\) (b) \(a+b\) (c) \(a-b\) (d) \(a-2 b\)
Chapter 6: Problem 468
For all \(n \in N, a^{n}-b^{n}\) is always divisible by \((a\) and \(b\) are distinct rational numbers) (a) \(2 \mathrm{a}-\mathrm{b}\) (b) \(a+b\) (c) \(a-b\) (d) \(a-2 b\)
All the tools & learning materials you need for study success - in one app.
Get started for free
\(\forall n \in N,\left(3+5^{(1 / 2)}\right)^{n}+\left(3-5^{(1 / 2)}\right)^{\mathrm{n}}\) is (a) Even natural number (b) Odd natural number (c) Any natural number (d) Rational number
The inequality \(\mathrm{n} !>2^{\mathrm{n}-1}\) is true for (a) \(n>2, n \in N\) (b) \(n<2\) (c) \(\mathrm{n} \in \mathrm{N}\) (d) None of these
By principle of mathematical induction, \(\forall \mathrm{n} \in \mathrm{N}\), \([1 /(1 \cdot 2 \cdot 3)]+[1 /(2 \cdot 3 \cdot 4)]+\ldots\) \(+[1 /\\{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)\\}]=\) (a) \([\\{n(n+1)\\} /\\{4(n+2)(n+3)\\}]\) (b) \([\\{n(n+3)\\} /\\{4(n+1)(n+2)\\}]\) (c) \([\\{n(n+2)\\} /\\{4(n+1)(n+3)\\}]\) (d) None of these
If matrix \(\mathrm{A}=\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|\) and \(\mathrm{I}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) then which one of the following holds for all \(n \in N\). (use principle of mathematical Induction) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}-(\mathrm{n}-1) \mathrm{I}\) (b) \(\mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (b) \(A^{n}=2^{n-1} \cdot A-(n-1) I\)
Let \(\mathrm{P}(\mathrm{n}): \mathrm{n}^{2}+1\) is an odd integer, if it is assumed that \(\mathrm{P}(\mathrm{k})\) is true \(\Rightarrow \mathrm{P}(\mathrm{k}+1)\) is true. Therefore, \(\mathrm{P}(\mathrm{n})\) is true (a) for \(\mathrm{n}>1\) (b) for all \(\mathrm{n} \in \mathrm{N}\) (c) for \(\mathrm{n}>2\) (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.