Chapter 6: Problem 474
For each \(n \in N, 3^{2 n}-1\) is divisible by (a) 8 (b) 16 (c) 32 (d) None of these
Chapter 6: Problem 474
For each \(n \in N, 3^{2 n}-1\) is divisible by (a) 8 (b) 16 (c) 32 (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{P}(\mathrm{n}): 3^{\mathrm{n}}<\mathrm{n} !, \mathrm{n} \in \mathrm{N}\), then \(\mathrm{P}(\mathrm{n})\) is true (a) for \(\mathrm{n} \geq 6\) (b) for \(n \geq 7, n \in N\) (c) for \(n \geq 3\) (d) for all \(n\)
\(\mathrm{S}_{\mathrm{n}}=2 \cdot 7^{\mathrm{n}}+3.5^{\mathrm{n}}-5, \mathrm{n} \in \mathrm{N}\) is divisible by the multiple of (a) 5 (b) 7 (c) 24 (d) None of these
By principle of mathematical induction, \(\forall \mathrm{n} \in \mathrm{N}\), \([1 /(1 \cdot 2 \cdot 3)]+[1 /(2 \cdot 3 \cdot 4)]+\ldots\) \(+[1 /\\{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)\\}]=\) (a) \([\\{n(n+1)\\} /\\{4(n+2)(n+3)\\}]\) (b) \([\\{n(n+3)\\} /\\{4(n+1)(n+2)\\}]\) (c) \([\\{n(n+2)\\} /\\{4(n+1)(n+3)\\}]\) (d) None of these
By principle of mathematical induction, \(\forall \mathrm{n} \in \mathrm{N}\), \(5^{2 \mathrm{n}+1}+3^{\mathrm{n}+2} \cdot 2^{\mathrm{n}-1}\) is divisible by (a) 19 (b) 18 (c) 17 (d) 14
For each \(n \in \mathrm{N}, 2 \cdot 4^{2 \mathrm{n}+1}+3^{3 \mathrm{n}+1}\) is divisible by (a) 2 (b) 9 (c) 3 (d) 11
What do you think about this solution?
We value your feedback to improve our textbook solutions.