Chapter 6: Problem 475
For each \(n \in N, 2^{3 n}-7 n-1\) is divisible by (a) 64 (b) 36 (c) 49 (d) 25
Chapter 6: Problem 475
For each \(n \in N, 2^{3 n}-7 n-1\) is divisible by (a) 64 (b) 36 (c) 49 (d) 25
All the tools & learning materials you need for study success - in one app.
Get started for freeThe inequality \(\mathrm{n} !>2^{\mathrm{n}-1}\) is true for (a) \(n>2, n \in N\) (b) \(n<2\) (c) \(\mathrm{n} \in \mathrm{N}\) (d) None of these
\(x\left(x^{n-1}-n \alpha^{n-1}\right)+\alpha^{n}(n-1)\) is divisible by \((x-\alpha)^{2}\) for (a) \(n>1\) (b) \(n>2\) (c) For all n \(\in \mathrm{N}\) (d) None of these
By principle of mathematical induction, \(\forall \mathrm{n} \subset \mathrm{N}, \cos \theta \cos 2 \theta \cos 4 \theta \ldots \cos \left[\left(2^{\mathrm{n}-1}\right) \theta\right]=\) (a) \(\left[\left(\sin 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (b) \(\left[\left(\cos 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (c) \(\left[\left(\sin 2^{\mathrm{n}} \theta\right) /\left(2^{\mathrm{n}-1} \sin \theta\right)\right]\) (d) None of these
If matrix \(\mathrm{A}=\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|\) and \(\mathrm{I}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) then which one of the following holds for all \(n \in N\). (use principle of mathematical Induction) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}-(\mathrm{n}-1) \mathrm{I}\) (b) \(\mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (b) \(A^{n}=2^{n-1} \cdot A-(n-1) I\)
If \(\mathrm{P}(\mathrm{n}):\left[4^{\mathrm{n}} /(\mathrm{n}+1)\right]<\left[(2 \mathrm{n}) ! /(\mathrm{n} !)^{2}\right]\), then \(\mathrm{P}(\mathrm{n})\) is true for (a) \(\mathrm{n} \geq 1\) (b) \(n>0\) (c) \(n<0\) (d) \(n \geq 2, n \in N\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.