Chapter 6: Problem 477
For each \(n \in \mathrm{N}, 2 \cdot 4^{2 \mathrm{n}+1}+3^{3 \mathrm{n}+1}\) is divisible by (a) 2 (b) 9 (c) 3 (d) 11
Chapter 6: Problem 477
For each \(n \in \mathrm{N}, 2 \cdot 4^{2 \mathrm{n}+1}+3^{3 \mathrm{n}+1}\) is divisible by (a) 2 (b) 9 (c) 3 (d) 11
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{P}(\mathrm{n}): \mathrm{n}^{2}+1\) is an odd integer, if it is assumed that \(\mathrm{P}(\mathrm{k})\) is true \(\Rightarrow \mathrm{P}(\mathrm{k}+1)\) is true. Therefore, \(\mathrm{P}(\mathrm{n})\) is true (a) for \(\mathrm{n}>1\) (b) for all \(\mathrm{n} \in \mathrm{N}\) (c) for \(\mathrm{n}>2\) (d) None of these
For each \(\mathrm{n} \in \mathrm{N}, 10^{2 \mathrm{n}-1}+1\) is divisible by (a) 11 (b) 13 (c) 9 (d) none of these
For each \(n \in N, 2^{3 n}-7 n-1\) is divisible by (a) 64 (b) 36 (c) 49 (d) 25
For all \(n \in N, a^{n}-b^{n}\) is always divisible by \((a\) and \(b\) are distinct rational numbers) (a) \(2 \mathrm{a}-\mathrm{b}\) (b) \(a+b\) (c) \(a-b\) (d) \(a-2 b\)
By principle of mathematical induction, \(\forall \mathrm{n} \in \mathrm{N}\), \(5^{2 \mathrm{n}+1}+3^{\mathrm{n}+2} \cdot 2^{\mathrm{n}-1}\) is divisible by (a) 19 (b) 18 (c) 17 (d) 14
What do you think about this solution?
We value your feedback to improve our textbook solutions.