Chapter 6: Problem 477
For each \(n \in \mathrm{N}, 2 \cdot 4^{2 \mathrm{n}+1}+3^{3 \mathrm{n}+1}\) is divisible by (a) 2 (b) 9 (c) 3 (d) 11
Chapter 6: Problem 477
For each \(n \in \mathrm{N}, 2 \cdot 4^{2 \mathrm{n}+1}+3^{3 \mathrm{n}+1}\) is divisible by (a) 2 (b) 9 (c) 3 (d) 11
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{x}^{2 \mathrm{n}-1}+\mathrm{y}^{2 \mathrm{n}-1}\) is divisible by \(\mathrm{x}+\mathrm{y}\), then \(\mathrm{n}\) is (a) Positive integer (b) Only for an even positive integer (c) An odd positive integer (d) \(\forall \mathrm{n}, \mathrm{n} \geq 2\)
\(10^{\mathrm{n}}+3\left(4^{\mathrm{n}+2}\right)+5\) is divisible by \((\mathrm{n} \in \mathrm{N})\) (a) 7 (b) 5 (c) 9 (d) 17
The greatest positive integer, which divides \((\mathrm{n}+2)(\mathrm{n}+3)\) \((n+4)(n+5)(n+6)\) for all \(\forall n \in N\), is (a) 120 (b) 4 (c) 240 (d) 24
For all \(n \in N, a^{n}-b^{n}\) is always divisible by \((a\) and \(b\) are distinct rational numbers) (a) \(2 \mathrm{a}-\mathrm{b}\) (b) \(a+b\) (c) \(a-b\) (d) \(a-2 b\)
The smallest positive integer \(\mathrm{n}\) for which \(\mathrm{n} !<\\{(\mathrm{n}+1) / 2\\}^{\mathrm{n}}\) holds, is
What do you think about this solution?
We value your feedback to improve our textbook solutions.