Chapter 6: Problem 480
If \(\mathrm{P}(\mathrm{n}): 1+3+5+\ldots \ldots+(2 \mathrm{n}-1)=\mathrm{n}^{2}\) is (a) True for \(\mathrm{n}>1\) (b) True for all \(\mathrm{n} \in \mathrm{N}\) (c) True for no \(\mathrm{n}\) (d) None of these
Chapter 6: Problem 480
If \(\mathrm{P}(\mathrm{n}): 1+3+5+\ldots \ldots+(2 \mathrm{n}-1)=\mathrm{n}^{2}\) is (a) True for \(\mathrm{n}>1\) (b) True for all \(\mathrm{n} \in \mathrm{N}\) (c) True for no \(\mathrm{n}\) (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeBy principle of mathematical induction, \(\forall \mathrm{n} \in \mathrm{N}\), \([1 /(1 \cdot 2 \cdot 3)]+[1 /(2 \cdot 3 \cdot 4)]+\ldots\) \(+[1 /\\{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)\\}]=\) (a) \([\\{n(n+1)\\} /\\{4(n+2)(n+3)\\}]\) (b) \([\\{n(n+3)\\} /\\{4(n+1)(n+2)\\}]\) (c) \([\\{n(n+2)\\} /\\{4(n+1)(n+3)\\}]\) (d) None of these
For all \(n \in N-\\{1\\}, 7^{2 n}-48 n-1\) is divisible by (a) 25 (b) 26 (c) 1234 (d) 2304
\(\forall n \in N,\left(3+5^{(1 / 2)}\right)^{n}+\left(3-5^{(1 / 2)}\right)^{\mathrm{n}}\) is (a) Even natural number (b) Odd natural number (c) Any natural number (d) Rational number
If \(n \in N\), then \(11^{n+2}+12^{2 n+1}\) is divisible by (a) 113 (b) 123 (c) 133 (d) None of these
If \(\mathrm{P}(\mathrm{n}):\left[4^{\mathrm{n}} /(\mathrm{n}+1)\right]<\left[(2 \mathrm{n}) ! /(\mathrm{n} !)^{2}\right]\), then \(\mathrm{P}(\mathrm{n})\) is true for (a) \(\mathrm{n} \geq 1\) (b) \(n>0\) (c) \(n<0\) (d) \(n \geq 2, n \in N\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.