Chapter 6: Problem 480
If \(\mathrm{P}(\mathrm{n}): 1+3+5+\ldots \ldots+(2 \mathrm{n}-1)=\mathrm{n}^{2}\) is (a) True for \(\mathrm{n}>1\) (b) True for all \(\mathrm{n} \in \mathrm{N}\) (c) True for no \(\mathrm{n}\) (d) None of these
Chapter 6: Problem 480
If \(\mathrm{P}(\mathrm{n}): 1+3+5+\ldots \ldots+(2 \mathrm{n}-1)=\mathrm{n}^{2}\) is (a) True for \(\mathrm{n}>1\) (b) True for all \(\mathrm{n} \in \mathrm{N}\) (c) True for no \(\mathrm{n}\) (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeFor all \(n \in N-\\{1\\}, 7^{2 n}-48 n-1\) is divisible by (a) 25 (b) 26 (c) 1234 (d) 2304
By principle of mathematical induction, \(\forall \mathrm{n} \subset \mathrm{N}, \cos \theta \cos 2 \theta \cos 4 \theta \ldots \cos \left[\left(2^{\mathrm{n}-1}\right) \theta\right]=\) (a) \(\left[\left(\sin 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (b) \(\left[\left(\cos 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (c) \(\left[\left(\sin 2^{\mathrm{n}} \theta\right) /\left(2^{\mathrm{n}-1} \sin \theta\right)\right]\) (d) None of these
If \(\mathrm{x}^{2 \mathrm{n}-1}+\mathrm{y}^{2 \mathrm{n}-1}\) is divisible by \(\mathrm{x}+\mathrm{y}\), then \(\mathrm{n}\) is (a) Positive integer (b) Only for an even positive integer (c) An odd positive integer (d) \(\forall \mathrm{n}, \mathrm{n} \geq 2\)
If \(\mathrm{P}(\mathrm{n}): 3^{\mathrm{n}}<\mathrm{n} !, \mathrm{n} \in \mathrm{N}\), then \(\mathrm{P}(\mathrm{n})\) is true (a) for \(\mathrm{n} \geq 6\) (b) for \(n \geq 7, n \in N\) (c) for \(n \geq 3\) (d) for all \(n\)
The smallest positive integer \(\mathrm{n}\) for which \(\mathrm{n} !<\\{(\mathrm{n}+1) / 2\\}^{\mathrm{n}}\) holds, is
What do you think about this solution?
We value your feedback to improve our textbook solutions.