Chapter 6: Problem 485
\(10^{\mathrm{n}}+3\left(4^{\mathrm{n}+2}\right)+5\) is divisible by \((\mathrm{n} \in \mathrm{N})\) (a) 7 (b) 5 (c) 9 (d) 17
Chapter 6: Problem 485
\(10^{\mathrm{n}}+3\left(4^{\mathrm{n}+2}\right)+5\) is divisible by \((\mathrm{n} \in \mathrm{N})\) (a) 7 (b) 5 (c) 9 (d) 17
All the tools & learning materials you need for study success - in one app.
Get started for freeThe smallest positive integer \(\mathrm{n}\) for which \(\mathrm{n} !<\\{(\mathrm{n}+1) / 2\\}^{\mathrm{n}}\) holds, is
\(x\left(x^{n-1}-n \alpha^{n-1}\right)+\alpha^{n}(n-1)\) is divisible by \((x-\alpha)^{2}\) for (a) \(n>1\) (b) \(n>2\) (c) For all n \(\in \mathrm{N}\) (d) None of these
For all positive integral values of \(n, 3^{3 n}-2 n+1\) is divisible by (a) 2 (b) 4 (c) 8 (d) 12
\(\forall n \in N,\left(3+5^{(1 / 2)}\right)^{n}+\left(3-5^{(1 / 2)}\right)^{\mathrm{n}}\) is (a) Even natural number (b) Odd natural number (c) Any natural number (d) Rational number
\(\mathrm{S}_{\mathrm{n}}=2 \cdot 7^{\mathrm{n}}+3.5^{\mathrm{n}}-5, \mathrm{n} \in \mathrm{N}\) is divisible by the multiple of (a) 5 (b) 7 (c) 24 (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.