Chapter 6: Problem 485
\(10^{\mathrm{n}}+3\left(4^{\mathrm{n}+2}\right)+5\) is divisible by \((\mathrm{n} \in \mathrm{N})\) (a) 7 (b) 5 (c) 9 (d) 17
Chapter 6: Problem 485
\(10^{\mathrm{n}}+3\left(4^{\mathrm{n}+2}\right)+5\) is divisible by \((\mathrm{n} \in \mathrm{N})\) (a) 7 (b) 5 (c) 9 (d) 17
All the tools & learning materials you need for study success - in one app.
Get started for freeBy principle of mathematical induction, \(\forall \mathrm{n} \subset \mathrm{N}, \cos \theta \cos 2 \theta \cos 4 \theta \ldots \cos \left[\left(2^{\mathrm{n}-1}\right) \theta\right]=\) (a) \(\left[\left(\sin 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (b) \(\left[\left(\cos 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (c) \(\left[\left(\sin 2^{\mathrm{n}} \theta\right) /\left(2^{\mathrm{n}-1} \sin \theta\right)\right]\) (d) None of these
By principle of mathematical induction, \(\forall \mathrm{n} \in \mathrm{N}\), \(5^{2 \mathrm{n}+1}+3^{\mathrm{n}+2} \cdot 2^{\mathrm{n}-1}\) is divisible by (a) 19 (b) 18 (c) 17 (d) 14
The product of three consecutive natural numbers is divisible by (a) 6 (b) 5 (c) 7 (d) 4
If \(\mathrm{P}(\mathrm{n}): 3^{\mathrm{n}}<\mathrm{n} !, \mathrm{n} \in \mathrm{N}\), then \(\mathrm{P}(\mathrm{n})\) is true (a) for \(\mathrm{n} \geq 6\) (b) for \(n \geq 7, n \in N\) (c) for \(n \geq 3\) (d) for all \(n\)
For each \(n \in N, 3^{2 n}-1\) is divisible by (a) 8 (b) 16 (c) 32 (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.