Chapter 6: Problem 486
\(\forall n \in N,\left(3+5^{(1 / 2)}\right)^{n}+\left(3-5^{(1 / 2)}\right)^{\mathrm{n}}\) is (a) Even natural number (b) Odd natural number (c) Any natural number (d) Rational number
Chapter 6: Problem 486
\(\forall n \in N,\left(3+5^{(1 / 2)}\right)^{n}+\left(3-5^{(1 / 2)}\right)^{\mathrm{n}}\) is (a) Even natural number (b) Odd natural number (c) Any natural number (d) Rational number
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{S}_{\mathrm{n}}=2 \cdot 7^{\mathrm{n}}+3.5^{\mathrm{n}}-5, \mathrm{n} \in \mathrm{N}\) is divisible by the multiple of (a) 5 (b) 7 (c) 24 (d) None of these
Let \(\mathrm{P}(\mathrm{n}): \mathrm{n}^{2}+1\) is an odd integer, if it is assumed that \(\mathrm{P}(\mathrm{k})\) is true \(\Rightarrow \mathrm{P}(\mathrm{k}+1)\) is true. Therefore, \(\mathrm{P}(\mathrm{n})\) is true (a) for \(\mathrm{n}>1\) (b) for all \(\mathrm{n} \in \mathrm{N}\) (c) for \(\mathrm{n}>2\) (d) None of these
The greatest positive integer, which divides \((\mathrm{n}+2)(\mathrm{n}+3)\) \((n+4)(n+5)(n+6)\) for all \(\forall n \in N\), is (a) 120 (b) 4 (c) 240 (d) 24
If \(\mathrm{x}^{2 \mathrm{n}-1}+\mathrm{y}^{2 \mathrm{n}-1}\) is divisible by \(\mathrm{x}+\mathrm{y}\), then \(\mathrm{n}\) is (a) Positive integer (b) Only for an even positive integer (c) An odd positive integer (d) \(\forall \mathrm{n}, \mathrm{n} \geq 2\)
For all \(n \in N, a^{n}-b^{n}\) is always divisible by \((a\) and \(b\) are distinct rational numbers) (a) \(2 \mathrm{a}-\mathrm{b}\) (b) \(a+b\) (c) \(a-b\) (d) \(a-2 b\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.