Chapter 6: Problem 488
For all positive integral values of \(n, 3^{3 n}-2 n+1\) is divisible by (a) 2 (b) 4 (c) 8 (d) 12
Chapter 6: Problem 488
For all positive integral values of \(n, 3^{3 n}-2 n+1\) is divisible by (a) 2 (b) 4 (c) 8 (d) 12
All the tools & learning materials you need for study success - in one app.
Get started for free\(\forall n \in N,\left(3+5^{(1 / 2)}\right)^{n}+\left(3-5^{(1 / 2)}\right)^{\mathrm{n}}\) is (a) Even natural number (b) Odd natural number (c) Any natural number (d) Rational number
By principle of mathematical induction, \(\forall \mathrm{n} \subset \mathrm{N}, \cos \theta \cos 2 \theta \cos 4 \theta \ldots \cos \left[\left(2^{\mathrm{n}-1}\right) \theta\right]=\) (a) \(\left[\left(\sin 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (b) \(\left[\left(\cos 2^{n} \theta\right) /\left(2^{n} \sin \theta\right)\right]\) (c) \(\left[\left(\sin 2^{\mathrm{n}} \theta\right) /\left(2^{\mathrm{n}-1} \sin \theta\right)\right]\) (d) None of these
If \(\mathrm{x}^{2 \mathrm{n}-1}+\mathrm{y}^{2 \mathrm{n}-1}\) is divisible by \(\mathrm{x}+\mathrm{y}\), then \(\mathrm{n}\) is (a) Positive integer (b) Only for an even positive integer (c) An odd positive integer (d) \(\forall \mathrm{n}, \mathrm{n} \geq 2\)
If matrix \(\mathrm{A}=\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|\) and \(\mathrm{I}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) then which one of the following holds for all \(n \in N\). (use principle of mathematical Induction) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}-(\mathrm{n}-1) \mathrm{I}\) (b) \(\mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (b) \(A^{n}=2^{n-1} \cdot A-(n-1) I\)
For each \(n \in N, 3^{2 n}-1\) is divisible by (a) 8 (b) 16 (c) 32 (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.