Chapter 6: Problem 489
If \(n \in N\), then \(11^{n+2}+12^{2 n+1}\) is divisible by (a) 113 (b) 123 (c) 133 (d) None of these
Chapter 6: Problem 489
If \(n \in N\), then \(11^{n+2}+12^{2 n+1}\) is divisible by (a) 113 (b) 123 (c) 133 (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeFor each \(\mathrm{n} \in \mathrm{N}, 10^{2 \mathrm{n}-1}+1\) is divisible by (a) 11 (b) 13 (c) 9 (d) none of these
\(\mathrm{S}_{\mathrm{n}}=2 \cdot 7^{\mathrm{n}}+3.5^{\mathrm{n}}-5, \mathrm{n} \in \mathrm{N}\) is divisible by the multiple of (a) 5 (b) 7 (c) 24 (d) None of these
If \(\mathrm{P}(\mathrm{n}): 3^{\mathrm{n}}<\mathrm{n} !, \mathrm{n} \in \mathrm{N}\), then \(\mathrm{P}(\mathrm{n})\) is true (a) for \(\mathrm{n} \geq 6\) (b) for \(n \geq 7, n \in N\) (c) for \(n \geq 3\) (d) for all \(n\)
For all \(n \in N-\\{1\\}, 7^{2 n}-48 n-1\) is divisible by (a) 25 (b) 26 (c) 1234 (d) 2304
For \(\mathrm{n} \in \mathrm{N}, \mathrm{P}(\mathrm{n}): 2^{\mathrm{n}}(\mathrm{n}-1) !<\mathrm{n}^{\mathrm{n}}\) is true, if (a) \(\mathrm{n}<2\) (b) \(n>2\) (c) \(n \geq 2\) (d) Never
What do you think about this solution?
We value your feedback to improve our textbook solutions.