Chapter 6: Problem 489
If \(n \in N\), then \(11^{n+2}+12^{2 n+1}\) is divisible by (a) 113 (b) 123 (c) 133 (d) None of these
Chapter 6: Problem 489
If \(n \in N\), then \(11^{n+2}+12^{2 n+1}\) is divisible by (a) 113 (b) 123 (c) 133 (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for free\(x\left(x^{n-1}-n \alpha^{n-1}\right)+\alpha^{n}(n-1)\) is divisible by \((x-\alpha)^{2}\) for (a) \(n>1\) (b) \(n>2\) (c) For all n \(\in \mathrm{N}\) (d) None of these
\(10^{\mathrm{n}}+3\left(4^{\mathrm{n}+2}\right)+5\) is divisible by \((\mathrm{n} \in \mathrm{N})\) (a) 7 (b) 5 (c) 9 (d) 17
Let \(\mathrm{P}(\mathrm{n}): \mathrm{n}^{2}+1\) is an odd integer, if it is assumed that \(\mathrm{P}(\mathrm{k})\) is true \(\Rightarrow \mathrm{P}(\mathrm{k}+1)\) is true. Therefore, \(\mathrm{P}(\mathrm{n})\) is true (a) for \(\mathrm{n}>1\) (b) for all \(\mathrm{n} \in \mathrm{N}\) (c) for \(\mathrm{n}>2\) (d) None of these
If \(\mathrm{P}(\mathrm{n}): 1+3+5+\ldots \ldots+(2 \mathrm{n}-1)=\mathrm{n}^{2}\) is (a) True for \(\mathrm{n}>1\) (b) True for all \(\mathrm{n} \in \mathrm{N}\) (c) True for no \(\mathrm{n}\) (d) None of these
If matrix \(\mathrm{A}=\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|\) and \(\mathrm{I}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) then which one of the following holds for all \(n \in N\). (use principle of mathematical Induction) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}-(\mathrm{n}-1) \mathrm{I}\) (b) \(\mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (b) \(A^{n}=2^{n-1} \cdot A-(n-1) I\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.