Chapter 7: Problem 491
If coefficients of \(\mathrm{x}^{7}\) and \(\mathrm{x}^{8}\) are equal in expansion of \([2+(\mathrm{x} / 3)]^{\mathrm{n}}\) then \(\mathrm{n}=\) (a) 55 (b) 56 (c) 54 (d) 58
Chapter 7: Problem 491
If coefficients of \(\mathrm{x}^{7}\) and \(\mathrm{x}^{8}\) are equal in expansion of \([2+(\mathrm{x} / 3)]^{\mathrm{n}}\) then \(\mathrm{n}=\) (a) 55 (b) 56 (c) 54 (d) 58
All the tools & learning materials you need for study success - in one app.
Get started for freeCoefficients of middle terms in expansion of \(\left[2-\left(\mathrm{x}^{3} / 3\right)\right]^{7}\) are... (a) \(-[(560) /(27)],-[(280) /(81)]\) (b) \([(560) /(27)],-[(280) /(81)]\) (c) \(-[(560) /(27)],[(280) /(81)]\) (d) \([(560) /(27)],[(280) /(81)]\)
If \(\mathrm{w} \neq 1\) is cube root of 1 then \({ }^{100} \sum_{\mathrm{r}=0}{ }^{100} \mathrm{c}_{\mathrm{r}}\left(2+\mathrm{w}^{2}\right)^{100-\mathrm{r}} \mathrm{w}^{\mathrm{r}}\) \(\begin{array}{llll}(\mathrm{a})-1 & \text { (b) } 0 & \text { (c) } 1 & \text { (d) } 2\end{array}\)
The interval in which \(\mathrm{x}(>0)\) must lie so that greatest term in the expansion of \((1+\mathrm{x})^{2 \mathrm{n}}\) has the greatest coefficient is (a) \([\\{(n-1) / n\\},\\{n /(n-1)\\}]\) (b) \([\\{\mathrm{n} /(\mathrm{n}+1)\\},\\{(\mathrm{n}+1) / \mathrm{n}\\}]\) (b) \([\\{n /(n+2)\\},\\{(n+2) / n\\}]\) (d) None
If 4 th term in expansion of \([p x+(1 / x)]^{n}\) is constant then \(n=\) (a) 3 (b) 4 (c) 5 (d) 6
Numbers of rational terms in expansion \(\left.\left[3^{(1 / 2)}+5^{(1 / 8)}\right)\right]^{256}\) are (a) 33 (b) 34 (c) 35 (d) 32
What do you think about this solution?
We value your feedback to improve our textbook solutions.