Chapter 7: Problem 491
If coefficients of \(\mathrm{x}^{7}\) and \(\mathrm{x}^{8}\) are equal in expansion of \([2+(\mathrm{x} / 3)]^{\mathrm{n}}\) then \(\mathrm{n}=\) (a) 55 (b) 56 (c) 54 (d) 58
Chapter 7: Problem 491
If coefficients of \(\mathrm{x}^{7}\) and \(\mathrm{x}^{8}\) are equal in expansion of \([2+(\mathrm{x} / 3)]^{\mathrm{n}}\) then \(\mathrm{n}=\) (a) 55 (b) 56 (c) 54 (d) 58
All the tools & learning materials you need for study success - in one app.
Get started for free6 th term in the expansion of \(\left[\left(1 / x^{(8 / 3)}\right)+x^{2} \log _{10} x\right]^{8}\) is 5600 then \(\mathrm{x}=\) (a) 2 (b) \(\sqrt{5}\) (c) \(\sqrt{(10)}\) (d) 10
If \(\mathrm{x}\) is so small that terms with \(\mathrm{x}^{3}\) and higher powers of \(\mathrm{x}\) may be neglected then \(\left[\left\\{(1+\mathrm{x})^{(3 / 2)}-\\{1+(\mathrm{x} / 2)\\}^{3}\right\\} /\left\\{(1-\mathrm{x})^{(1 / 2)}\right\\}\right]\) may be approximated as \(\ldots \ldots \ldots\) (a) \([(-3) / 8] \mathrm{x}^{2}\) (b) \((1 / 2) \mathrm{x}-(3 / 8) \mathrm{x}^{2}\) (c) \(1-(3 / 8) x^{2}\) (d) \(3 x+(3 / 8) x^{2}\)
\(\left[\left(a^{1 / 3} / b^{1 / 6}\right)+\left(b^{1 / 2} / a^{1 / 6}\right)\right]^{21}\) has same power of a and \(b\) for \((\mathrm{r}+1)\) th term then \(\mathrm{r}=\) (a) 8 (b) 9 (c) 10 (d) 11
Constant term in expansion of \([1+(2 / \mathrm{x})-(2 / \mathrm{x})]^{4}\) is ........ (a) 5 (b) \(-5\) (c) 4 (d) \(-4\)
If \(\left(1-x+x^{2}\right) n=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}\) then \(a_{0}+a_{2}\) \(+a_{4}+\cdots+a_{2 n}=\) (a) \(\left[\left(3^{\mathrm{n}}-1\right) / 2\right]\) (b) \(\left[\left(1-3^{\mathrm{n}}\right) / 2\right]\) (c) \(\left[\left(3^{\mathrm{n}}+1\right) / 2\right]\) (d) \(\left[\left(3^{\mathrm{n}+1}\right) / 2\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.