Chapter 7: Problem 492
The constant term in expansion of \(\left[\left\\{\left(3 \mathrm{x}^{2}\right) / 2\right\\}-(1 / 3 \mathrm{x})\right]^{9}\), \(\mathrm{x} \neq 0\) is (a) \((5 / 18)\) (b) \((7 / 18)\) (c) \((5 / 17)\) (d) \((7 / 17)\)
Chapter 7: Problem 492
The constant term in expansion of \(\left[\left\\{\left(3 \mathrm{x}^{2}\right) / 2\right\\}-(1 / 3 \mathrm{x})\right]^{9}\), \(\mathrm{x} \neq 0\) is (a) \((5 / 18)\) (b) \((7 / 18)\) (c) \((5 / 17)\) (d) \((7 / 17)\)
All the tools & learning materials you need for study success - in one app.
Get started for free
The expansion of \(\left[\mathrm{x}+\sqrt{\left(\mathrm{x}^{3}-1\right)}\right]^{5}+\left[\mathrm{x}-\sqrt{\left(\mathrm{x}^{3}-1\right)}\right]^{5}\) is a polynomial of degree (a) 5 (b) 6 (c) 7 (d) 8
The \(11^{\text {th }}\) term from last, in expansion of \(\left[2 \mathrm{x}+\left(1 / \mathrm{x}^{2}\right)\right]^{25}\) is (a) \(-{ }^{25} \mathrm{C}_{15}\left(2^{10} / \mathrm{x}^{20}\right)\) (b) \(+{ }^{25} \mathrm{C}_{15}\left(2^{10} / \mathrm{x}^{20}\right]\) (c) \(-{ }^{25} \mathrm{C}_{14}\left(2^{11} / \mathrm{x}^{11}\right)\) (d) \({ }^{25} \mathrm{C}_{14}\left(2^{11} / \mathrm{x}^{11}\right)\)
\((10.1)^{5}=\) (a) \(105101.501\) (b) \(105101.0501\) (c) \(105101.00501\) (d) \(105101.05001\)
If \(\mathrm{x}\) is so small that terms with \(\mathrm{x}^{3}\) and higher powers of \(\mathrm{x}\) may be neglected then \(\left[\left\\{(1+\mathrm{x})^{(3 / 2)}-\\{1+(\mathrm{x} / 2)\\}^{3}\right\\} /\left\\{(1-\mathrm{x})^{(1 / 2)}\right\\}\right]\) may be approximated as \(\ldots \ldots \ldots\) (a) \([(-3) / 8] \mathrm{x}^{2}\) (b) \((1 / 2) \mathrm{x}-(3 / 8) \mathrm{x}^{2}\) (c) \(1-(3 / 8) x^{2}\) (d) \(3 x+(3 / 8) x^{2}\)
Index number of middle term in expansion of \(\left[1+a+\left(a^{2} / 4\right)\right]^{n}\) is (a) \((\mathrm{n} / 2)+1\) (b) \([(\mathrm{n}+2) / 2]\) (c) \(n+1\) (d) \([(\mathrm{n}+3) / 2]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.