Chapter 7: Problem 495
If middle term is \(\mathrm{kx}^{\mathrm{m}}\) in expansion of \([\mathrm{x}+(1 / \mathrm{x})]^{12}\) then \(\mathrm{m}=\) (a) \(-2\) (b) \(-1\) (c) 0 (d) 1
Chapter 7: Problem 495
If middle term is \(\mathrm{kx}^{\mathrm{m}}\) in expansion of \([\mathrm{x}+(1 / \mathrm{x})]^{12}\) then \(\mathrm{m}=\) (a) \(-2\) (b) \(-1\) (c) 0 (d) 1
All the tools & learning materials you need for study success - in one app.
Get started for free
\(\left[\left\\{19^{3}+6^{3}+3(19)(6)(25)\right\\} /\left\\{3^{6}+6(243)(2)+(15)(81)(4)\right.\right.\) \(\left.\left.+(20)(27)(8)+(15)(9)(16)+(6)(3)(32)+2^{6}\right\\}\right]=\) (a) (b) 5 (c) 2 (d) 6
If co-efficient of \((\mathrm{r}+2)\) th term and \(3 \mathrm{r}\) th term are equal in expansion of \((1+\mathrm{x})^{2 \mathrm{n}}, \mathrm{n}, \mathrm{r} \in \mathrm{N}, \mathrm{r}>1, \mathrm{n}>2\) then \(\mathrm{n}=\) (a) \(3 \mathrm{r}\) (b) \(3 \mathrm{r}+1\) (c) \(2 \mathrm{r}\) (d) \(2 r+1\)
\(\left|\begin{array}{c}\mathrm{n}-1 \\\ 1\end{array}\right|+\left|\begin{array}{c}\mathrm{n}-1 \\\ 2\end{array}\right|+\ldots+\left|\begin{array}{l}\mathrm{n}-1 \\\ \mathrm{n}-1\end{array}\right|=\underline{ } ; \mathrm{n}>1\) (a) \(2^{\mathrm{n}}-1\) (b) \(2^{\mathrm{n}-2}\) (c) \(2^{\mathrm{n}-1}-1\) (d) \(2^{\mathrm{n}-1}\)
Number of irrational terms in expansion of \(\left[4^{(1 / 5)}+7^{(1 / 10)}\right]^{45}=\) (a) 40 (b) 5 (c) 41 (d) 8
When \(5^{20}\) is divided by 48 then remainder is (a) 2 (b) 0 (c) 1 (d) 5
What do you think about this solution?
We value your feedback to improve our textbook solutions.