Chapter 7: Problem 495
If middle term is \(\mathrm{kx}^{\mathrm{m}}\) in expansion of \([\mathrm{x}+(1 / \mathrm{x})]^{12}\) then \(\mathrm{m}=\) (a) \(-2\) (b) \(-1\) (c) 0 (d) 1
Chapter 7: Problem 495
If middle term is \(\mathrm{kx}^{\mathrm{m}}\) in expansion of \([\mathrm{x}+(1 / \mathrm{x})]^{12}\) then \(\mathrm{m}=\) (a) \(-2\) (b) \(-1\) (c) 0 (d) 1
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the expansion of \((x-y)^{10}\), (co-efficient of \(x^{7} y^{3}\) ) \(\left(\right.\) co-efficient of \(\left.x^{3} y^{7}\right)=\) (a) \({ }^{10} \mathrm{C}_{7}\) (b) \({ }^{2.10} \mathrm{C}_{7}\) (c) \({ }^{10} \mathrm{C}_{7}+{ }^{10} \mathrm{C}_{1}\) (d) 0
\(\mathrm{s}(\mathrm{k}): 1+3+5+\ldots+(2 \mathrm{k}-1)=3+\mathrm{k}^{2}\) then which statement is true ? (a) \(\mathrm{s}(\mathrm{k}) \Rightarrow \mathrm{s}(\mathrm{k}+1)\) (b) \(\mathrm{s}(\mathrm{k}) \Rightarrow \mathrm{s}(\mathrm{k}+1)\) (c) s (1) is true (d) Result is proved by Principle of Mathematical induction
\(3^{\mathrm{rd}}\) term in expansion of \(\left[(1 / \mathrm{x})+\mathrm{x}^{(\log )}{ }_{10}(\mathrm{x})\right]^{5}\) is 1000 then \(\mathrm{x}=\) (a) 10 (b) 100 (c) 1000 (d) None
\(10^{\text {th }}\) term in expansion of \(\left[2 x^{2}+(1 / x)\right]^{12}\) is \(\ldots \ldots \ldots\) (a) \(\left[(1760) / \mathrm{x}^{2}\right]\) (b) \(\left[(1760) / \mathrm{x}^{3}\right]\) (c) \(\left[(880) / \mathrm{x}^{2}\right]\) (d) \(\left[(880) / \mathrm{x}^{3}\right]\)
\(\mathrm{R}=(\sqrt{2}+1)^{2 \mathrm{n}+1}, \mathrm{n} \in \mathrm{N}\) and \(\mathrm{f}=\mathrm{R}-[\mathrm{R}]\), Where [] is an integer part function then \(\mathrm{Rf}=\) (a) \(2^{2 \mathrm{n}+1}\) (b) \(2^{2 \mathrm{n}-1}\) (c) \(2^{2 \mathrm{n}}-1\) (d) 1
What do you think about this solution?
We value your feedback to improve our textbook solutions.