Chapter 7: Problem 498
In the expansion of \((\mathrm{x}+\mathrm{y})^{13}\) the co-efficient of \(3 \mathrm{rd}\) term and th terms are equal. (a) 12 (b) 11 (c) 8 (d) 13
Chapter 7: Problem 498
In the expansion of \((\mathrm{x}+\mathrm{y})^{13}\) the co-efficient of \(3 \mathrm{rd}\) term and th terms are equal. (a) 12 (b) 11 (c) 8 (d) 13
All the tools & learning materials you need for study success - in one app.
Get started for free
Let \(\mathrm{x}>-1\) then statement \((1+\mathrm{x})^{\mathrm{n}}>1+\mathrm{n} \mathrm{x}\) is true for (a) \(\forall \mathrm{n} \in \mathrm{N}\) (b) \(\forall n>1\) (c) \(\forall \mathrm{n}>1\) and \(\mathrm{x} \neq 0\) (d) \(\forall \mathrm{n} \in \mathrm{R}\)
Remainder when \(2^{2000}\) is divided by 17 is......... (a) 1 (b) 2 (c) 8 (d) 12
\(\mathrm{s}(\mathrm{k}): 1+3+5+\ldots+(2 \mathrm{k}-1)=3+\mathrm{k}^{2}\) then which statement is true ? (a) \(\mathrm{s}(\mathrm{k}) \Rightarrow \mathrm{s}(\mathrm{k}+1)\) (b) \(\mathrm{s}(\mathrm{k}) \Rightarrow \mathrm{s}(\mathrm{k}+1)\) (c) s (1) is true (d) Result is proved by Principle of Mathematical induction
Coefficients of middle terms in expansion of \(\left[2-\left(\mathrm{x}^{3} / 3\right)\right]^{7}\) are... (a) \(-[(560) /(27)],-[(280) /(81)]\) (b) \([(560) /(27)],-[(280) /(81)]\) (c) \(-[(560) /(27)],[(280) /(81)]\) (d) \([(560) /(27)],[(280) /(81)]\)
Number of irrational terms in expansion of \(\left[4^{(1 / 5)}+7^{(1 / 10)}\right]^{45}=\) (a) 40 (b) 5 (c) 41 (d) 8
What do you think about this solution?
We value your feedback to improve our textbook solutions.