Chapter 7: Problem 500
In the expansion of \(\left[\mathrm{a}^{(2 / 5)}+\mathrm{b}^{(1 / 3)}\right]^{35} \mathrm{a} \neq \mathrm{b}\), the number of terms in which the power of a and \(\mathrm{b}\) are integers are (a) 1 (b) 2 (c) 3 (d) 4
Chapter 7: Problem 500
In the expansion of \(\left[\mathrm{a}^{(2 / 5)}+\mathrm{b}^{(1 / 3)}\right]^{35} \mathrm{a} \neq \mathrm{b}\), the number of terms in which the power of a and \(\mathrm{b}\) are integers are (a) 1 (b) 2 (c) 3 (d) 4
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the sum of co-efficient of expansion \(\left(m^{2} x^{2}+2 m x+1\right)^{31}\) is zero then \(\mathrm{m}=\) (a) 1 (b) - 1 (c) 2 (d) \(-2\)
\((\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}=\) (a) 58 (b) \(58 \sqrt{2}\) (c) \(-58\) (d) \(-58 \sqrt{2}\)
If \(\left(1-x+x^{2}\right) n=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}\) then \(a_{0}+a_{2}\) \(+a_{4}+\cdots+a_{2 n}=\) (a) \(\left[\left(3^{\mathrm{n}}-1\right) / 2\right]\) (b) \(\left[\left(1-3^{\mathrm{n}}\right) / 2\right]\) (c) \(\left[\left(3^{\mathrm{n}}+1\right) / 2\right]\) (d) \(\left[\left(3^{\mathrm{n}+1}\right) / 2\right]\)
If rth term in expansion of \([x+(1 / 2 x)]^{12}\) is constant then \(r\) (a) 5 (b) 6 (c) 7 (d) 8
Co-efficient of \(\mathrm{x}^{5}\) in expansion of \((1+2 \mathrm{x})^{6}(1-\mathrm{x})^{7}\) is....... (a) 150 (b) 171 (c) 192 (d) 161
What do you think about this solution?
We value your feedback to improve our textbook solutions.