Chapter 7: Problem 500
In the expansion of \(\left[\mathrm{a}^{(2 / 5)}+\mathrm{b}^{(1 / 3)}\right]^{35} \mathrm{a} \neq \mathrm{b}\), the number of terms in which the power of a and \(\mathrm{b}\) are integers are (a) 1 (b) 2 (c) 3 (d) 4
Chapter 7: Problem 500
In the expansion of \(\left[\mathrm{a}^{(2 / 5)}+\mathrm{b}^{(1 / 3)}\right]^{35} \mathrm{a} \neq \mathrm{b}\), the number of terms in which the power of a and \(\mathrm{b}\) are integers are (a) 1 (b) 2 (c) 3 (d) 4
All the tools & learning materials you need for study success - in one app.
Get started for free
\(10^{\text {th }}\) term in expansion of \(\left[2 x^{2}+(1 / x)\right]^{12}\) is \(\ldots \ldots \ldots\) (a) \(\left[(1760) / \mathrm{x}^{2}\right]\) (b) \(\left[(1760) / \mathrm{x}^{3}\right]\) (c) \(\left[(880) / \mathrm{x}^{2}\right]\) (d) \(\left[(880) / \mathrm{x}^{3}\right]\)
\(\left[\left(a^{1 / 3} / b^{1 / 6}\right)+\left(b^{1 / 2} / a^{1 / 6}\right)\right]^{21}\) has same power of a and \(b\) for \((\mathrm{r}+1)\) th term then \(\mathrm{r}=\) (a) 8 (b) 9 (c) 10 (d) 11
If rth term in expansion of \(\left[2 \mathrm{x}^{3}+\left(5 / \mathrm{x}^{2}\right)\right]^{10}\) is constant then \(\mathrm{r}\) (a) 6 (b) 7 (c) 4 (d) 5
Numbers of rational terms in expansion \(\left.\left[3^{(1 / 2)}+5^{(1 / 8)}\right)\right]^{256}\) are (a) 33 (b) 34 (c) 35 (d) 32
If middle term is \(\mathrm{kx}^{\mathrm{m}}\) in expansion of \([\mathrm{x}+(1 / \mathrm{x})]^{12}\) then \(\mathrm{m}=\) (a) \(-2\) (b) \(-1\) (c) 0 (d) 1
What do you think about this solution?
We value your feedback to improve our textbook solutions.