Chapter 7: Problem 501
6 th term in the expansion of \(\left[\left(1 / x^{(8 / 3)}\right)+x^{2} \log _{10} x\right]^{8}\) is 5600 then \(\mathrm{x}=\) (a) 2 (b) \(\sqrt{5}\) (c) \(\sqrt{(10)}\) (d) 10
Chapter 7: Problem 501
6 th term in the expansion of \(\left[\left(1 / x^{(8 / 3)}\right)+x^{2} \log _{10} x\right]^{8}\) is 5600 then \(\mathrm{x}=\) (a) 2 (b) \(\sqrt{5}\) (c) \(\sqrt{(10)}\) (d) 10
All the tools & learning materials you need for study success - in one app.
Get started for freeRemainder when \(8^{2 \mathrm{n}}-62^{2 \mathrm{n}+1}\) is divided by 9 is (a) 0 (b) 2 (c) 7 (d) 8
The constant term in expansion of \(\left[\left\\{\left(3 \mathrm{x}^{2}\right) / 2\right\\}-(1 / 3 \mathrm{x})\right]^{9}\), \(\mathrm{x} \neq 0\) is (a) \((5 / 18)\) (b) \((7 / 18)\) (c) \((5 / 17)\) (d) \((7 / 17)\)
\(\left[\left(a^{1 / 3} / b^{1 / 6}\right)+\left(b^{1 / 2} / a^{1 / 6}\right)\right]^{21}\) has same power of a and \(b\) for \((\mathrm{r}+1)\) th term then \(\mathrm{r}=\) (a) 8 (b) 9 (c) 10 (d) 11
Remainder when \(2^{2000}\) is divided by 17 is......... (a) 1 (b) 2 (c) 8 (d) 12
\(\left[5^{(1 / 2)}+7^{(1 / 8)}\right]^{1024}\) has number of rational terms \(=\) (a) 0 (b) 129 (c) 229 (d) 178
What do you think about this solution?
We value your feedback to improve our textbook solutions.