Chapter 7: Problem 505
The Co-efficient of \(x^{3}\) in \(\left(1-x+x^{2}\right)^{5}\) is (a) \(-30\) (b) \(-20\) (c) \(-10\) (d) 30
Chapter 7: Problem 505
The Co-efficient of \(x^{3}\) in \(\left(1-x+x^{2}\right)^{5}\) is (a) \(-30\) (b) \(-20\) (c) \(-10\) (d) 30
All the tools & learning materials you need for study success - in one app.
Get started for freeThe \(11^{\text {th }}\) term from last, in expansion of \(\left[2 \mathrm{x}+\left(1 / \mathrm{x}^{2}\right)\right]^{25}\) is (a) \(-{ }^{25} \mathrm{C}_{15}\left(2^{10} / \mathrm{x}^{20}\right)\) (b) \(+{ }^{25} \mathrm{C}_{15}\left(2^{10} / \mathrm{x}^{20}\right]\) (c) \(-{ }^{25} \mathrm{C}_{14}\left(2^{11} / \mathrm{x}^{11}\right)\) (d) \({ }^{25} \mathrm{C}_{14}\left(2^{11} / \mathrm{x}^{11}\right)\)
Coefficients of middle terms in expansion of \(\left[2-\left(\mathrm{x}^{3} / 3\right)\right]^{7}\) are... (a) \(-[(560) /(27)],-[(280) /(81)]\) (b) \([(560) /(27)],-[(280) /(81)]\) (c) \(-[(560) /(27)],[(280) /(81)]\) (d) \([(560) /(27)],[(280) /(81)]\)
\({ }^{\mathrm{n}} \sum_{\mathrm{r}=0}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} 4^{\mathrm{r}}=\) (a) \(4^{\mathrm{n}}\) (b) \(5^{\mathrm{n}}\) (c) \(4^{-n}\) (d) \(5^{-n}\)
If the sum of co-efficient of first three terms in expansion of \(\left[a-\left(3 / a^{2}\right)\right]^{m}, m \in N, a \neq 0\) is 559 then \(m=\) (a) 10 (b) 11 (c) 12 (d) 13
In the expansion of \((x-y)^{10}\), (co-efficient of \(x^{7} y^{3}\) ) \(\left(\right.\) co-efficient of \(\left.x^{3} y^{7}\right)=\) (a) \({ }^{10} \mathrm{C}_{7}\) (b) \({ }^{2.10} \mathrm{C}_{7}\) (c) \({ }^{10} \mathrm{C}_{7}+{ }^{10} \mathrm{C}_{1}\) (d) 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.