Chapter 7: Problem 505
The Co-efficient of \(x^{3}\) in \(\left(1-x+x^{2}\right)^{5}\) is (a) \(-30\) (b) \(-20\) (c) \(-10\) (d) 30
Chapter 7: Problem 505
The Co-efficient of \(x^{3}\) in \(\left(1-x+x^{2}\right)^{5}\) is (a) \(-30\) (b) \(-20\) (c) \(-10\) (d) 30
All the tools & learning materials you need for study success - in one app.
Get started for freeCo-efficient of \(\mathrm{x}^{4}\) in expansion of \(\left(1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}\right)^{11}\) is (a) 330 (b) 990 (c) 1040 (d) 900
If \(\mathrm{x}\) is so small that terms with \(\mathrm{x}^{3}\) and higher powers of \(\mathrm{x}\) may be neglected then \(\left[\left\\{(1+\mathrm{x})^{(3 / 2)}-\\{1+(\mathrm{x} / 2)\\}^{3}\right\\} /\left\\{(1-\mathrm{x})^{(1 / 2)}\right\\}\right]\) may be approximated as \(\ldots \ldots \ldots\) (a) \([(-3) / 8] \mathrm{x}^{2}\) (b) \((1 / 2) \mathrm{x}-(3 / 8) \mathrm{x}^{2}\) (c) \(1-(3 / 8) x^{2}\) (d) \(3 x+(3 / 8) x^{2}\)
The greatest term in expansion of \((1+\mathrm{x})^{10}\) is \(\mathrm{x}=(2 / 3)\) (a) \(210(3 / 2)^{6}\) (b) \(210(2 / 3)^{6}\) (c) \(210(2 / 3)^{4}\) (d) \(210(3 / 2)^{4}\)
If the ratio of co-efficient of three consecutive terms in expansion of \((1+x)^{n}\) is \(1: 7: 42\) then \(n=\) (a) 35 (b) 45 (c) 55 (d) 65
\(\left[(\sqrt{3}+1)^{6}\right]=\ldots \ldots \ldots ;\) where [] is integer part function. (a) 415 (b) 416 (c) 417 (a) 418
What do you think about this solution?
We value your feedback to improve our textbook solutions.