Chapter 7: Problem 510
Number of terms in expansion of \((\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}})^{10}+(\sqrt{\mathrm{x}}-\sqrt{\mathrm{y}})^{10}\) is \(\ldots \ldots\) (a) 5 (b) 6 (c) 7 (d) 8
Chapter 7: Problem 510
Number of terms in expansion of \((\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}})^{10}+(\sqrt{\mathrm{x}}-\sqrt{\mathrm{y}})^{10}\) is \(\ldots \ldots\) (a) 5 (b) 6 (c) 7 (d) 8
All the tools & learning materials you need for study success - in one app.
Get started for freeIf coefficients of \(\mathrm{x}^{7}\) and \(\mathrm{x}^{8}\) are equal in expansion of \([2+(\mathrm{x} / 3)]^{\mathrm{n}}\) then \(\mathrm{n}=\) (a) 55 (b) 56 (c) 54 (d) 58
It \(\mathrm{A}\) and \(\mathrm{B}\) are coefficients of \(\mathrm{x}^{\mathrm{r}}\) and \(\mathrm{x}^{\mathrm{n}-\mathrm{r}}\) respectively in expansion of \((1+x)^{n}\) then \(=\) (a) \(\mathrm{A}+\mathrm{B}=\mathrm{n}\) (b) \(\mathrm{A}=\mathrm{B}\) (c) \(\mathrm{A}+\mathrm{B}=2^{\mathrm{n}}\) (d) \(A-B=2^{n}\)
Constant term in expansion of \([1+(2 / \mathrm{x})-(2 / \mathrm{x})]^{4}\) is ........ (a) 5 (b) \(-5\) (c) 4 (d) \(-4\)
\(\left[5^{(1 / 2)}+7^{(1 / 8)}\right]^{1024}\) has number of rational terms \(=\) (a) 0 (b) 129 (c) 229 (d) 178
\((\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}=\) (a) 58 (b) \(58 \sqrt{2}\) (c) \(-58\) (d) \(-58 \sqrt{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.