Chapter 7: Problem 510
Number of terms in expansion of \((\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}})^{10}+(\sqrt{\mathrm{x}}-\sqrt{\mathrm{y}})^{10}\) is \(\ldots \ldots\) (a) 5 (b) 6 (c) 7 (d) 8
Chapter 7: Problem 510
Number of terms in expansion of \((\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}})^{10}+(\sqrt{\mathrm{x}}-\sqrt{\mathrm{y}})^{10}\) is \(\ldots \ldots\) (a) 5 (b) 6 (c) 7 (d) 8
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{x}\) is so small that terms with \(\mathrm{x}^{3}\) and higher powers of \(\mathrm{x}\) may be neglected then \(\left[\left\\{(1+\mathrm{x})^{(3 / 2)}-\\{1+(\mathrm{x} / 2)\\}^{3}\right\\} /\left\\{(1-\mathrm{x})^{(1 / 2)}\right\\}\right]\) may be approximated as \(\ldots \ldots \ldots\) (a) \([(-3) / 8] \mathrm{x}^{2}\) (b) \((1 / 2) \mathrm{x}-(3 / 8) \mathrm{x}^{2}\) (c) \(1-(3 / 8) x^{2}\) (d) \(3 x+(3 / 8) x^{2}\)
\(\left[(\sqrt{2}+1)^{8}\right]=\ldots \ldots \ldots ;\) where [] is integer part function. (a) 1151 (b) 1152 (c) 1153 (a) 1154
Number of irrational terms in expansion of \(\left[4^{(1 / 5)}+7^{(1 / 10)}\right]^{45}=\) (a) 40 (b) 5 (c) 41 (d) 8
Sum of Co-efficient of last 15 terms in expansion of \((1+\mathrm{x})^{29}\) is (a) \(2^{15}\) (b) \(2^{30}\) (c) \(2^{29}\) (d) \(2^{28}\)
It \(\mathrm{A}\) and \(\mathrm{B}\) are coefficients of \(\mathrm{x}^{\mathrm{r}}\) and \(\mathrm{x}^{\mathrm{n}-\mathrm{r}}\) respectively in expansion of \((1+x)^{n}\) then \(=\) (a) \(\mathrm{A}+\mathrm{B}=\mathrm{n}\) (b) \(\mathrm{A}=\mathrm{B}\) (c) \(\mathrm{A}+\mathrm{B}=2^{\mathrm{n}}\) (d) \(A-B=2^{n}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.