Chapter 7: Problem 517
If \(a, b \in N, a \neq b\) then for \(r \in N, a^{n}-b^{n}\) is divisible by (a) \(a-b\) (b) \(\mathrm{b}-\mathrm{a}\) (c) both (a) and (b) (d) None of these
Chapter 7: Problem 517
If \(a, b \in N, a \neq b\) then for \(r \in N, a^{n}-b^{n}\) is divisible by (a) \(a-b\) (b) \(\mathrm{b}-\mathrm{a}\) (c) both (a) and (b) (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for free\(17^{\text {th }}\) term and \(18^{\text {th }}\) term are equal in expansion of \((2+x)^{40}\) then \(\mathrm{x}=\) (a) \((17 / 24)\) (b) \((17 / 12)\) (c) \((34 / 13)\) (d) \((34 / 15)\)
\(\mathrm{s}(\mathrm{k}): 1+3+5+\ldots+(2 \mathrm{k}-1)=3+\mathrm{k}^{2}\) then which statement is true ? (a) \(\mathrm{s}(\mathrm{k}) \Rightarrow \mathrm{s}(\mathrm{k}+1)\) (b) \(\mathrm{s}(\mathrm{k}) \Rightarrow \mathrm{s}(\mathrm{k}+1)\) (c) s (1) is true (d) Result is proved by Principle of Mathematical induction
th term is constant term in expansion of \(\left[\left(3 / x^{2}\right)+(\sqrt{x} / 3)\right]^{10}, x \neq 0\) (a) 4 (b) 7 (c) 8 (d) 9
Let \(\mathrm{x}>-1\) then statement \((1+\mathrm{x})^{\mathrm{n}}>1+\mathrm{n} \mathrm{x}\) is true for (a) \(\forall \mathrm{n} \in \mathrm{N}\) (b) \(\forall n>1\) (c) \(\forall \mathrm{n}>1\) and \(\mathrm{x} \neq 0\) (d) \(\forall \mathrm{n} \in \mathrm{R}\)
Constant term in expansion of \([1+(2 / \mathrm{x})-(2 / \mathrm{x})]^{4}\) is ........ (a) 5 (b) \(-5\) (c) 4 (d) \(-4\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.