Chapter 7: Problem 517
If \(a, b \in N, a \neq b\) then for \(r \in N, a^{n}-b^{n}\) is divisible by (a) \(a-b\) (b) \(\mathrm{b}-\mathrm{a}\) (c) both (a) and (b) (d) None of these
Chapter 7: Problem 517
If \(a, b \in N, a \neq b\) then for \(r \in N, a^{n}-b^{n}\) is divisible by (a) \(a-b\) (b) \(\mathrm{b}-\mathrm{a}\) (c) both (a) and (b) (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe Co-efficient of \(x^{3}\) in \(\left(1-x+x^{2}\right)^{5}\) is (a) \(-30\) (b) \(-20\) (c) \(-10\) (d) 30
Coefficients of \((2 r+4)\) th term and \((r-2)\) th term are equal in expansion of \((1+x)^{18}\) then \(r=\) (a) 4 (b) 5 (c) 6 (d) 7
If \(\mathrm{P}\) and \(\mathrm{Q}\) are coefficients of \(\mathrm{x}^{\mathrm{n}}\) in expansion of \((1+\mathrm{x})^{2 \mathrm{n}}\) and \((1+x)^{2 n-1}\) then (a) \(\mathrm{P}=\mathrm{Q}\) (b) \(P=2 Q\) (c) \(2 \mathrm{P}=\mathrm{Q}\) (a) \(P+Q=0\)
The constant term in expansion of \(\left[\left\\{(x+1) /\left\\{x^{(2 / 3)}-x^{(1 / 3)}+1\right\\}\right\\}-\left\\{(x-1) /\left(x-x^{(1 / 2)}\right)\right\\}\right]^{10}\) is (a) 210 (b) 105 (c) 70 (d) 35
\(3^{\mathrm{rd}}\) term in expansion of \(\left[(1 / \mathrm{x})+\mathrm{x}^{(\log )}{ }_{10}(\mathrm{x})\right]^{5}\) is 1000 then \(\mathrm{x}=\) (a) 10 (b) 100 (c) 1000 (d) None
What do you think about this solution?
We value your feedback to improve our textbook solutions.