Chapter 7: Problem 522
\(3^{\mathrm{rd}}\) term in expansion of \(\left[(1 / \mathrm{x})+\mathrm{x}^{(\log )}{ }_{10}(\mathrm{x})\right]^{5}\) is 1000 then \(\mathrm{x}=\) (a) 10 (b) 100 (c) 1000 (d) None
Chapter 7: Problem 522
\(3^{\mathrm{rd}}\) term in expansion of \(\left[(1 / \mathrm{x})+\mathrm{x}^{(\log )}{ }_{10}(\mathrm{x})\right]^{5}\) is 1000 then \(\mathrm{x}=\) (a) 10 (b) 100 (c) 1000 (d) None
All the tools & learning materials you need for study success - in one app.
Get started for freeIf coefficient of \(2^{\text {nd }}, 3^{\text {rd }}\) and \(4^{\text {th }}\) terms re in A. P for \((1+x)^{n}\) then \(\mathrm{n}=\) (a) 28 (b) 14 (c) 7 (d) \((7 / 2)\)
Middle term in expansion of \([(2 / x)-3 x y]^{12}\) is (a) \(14370048 \mathrm{y}^{6}\) (b) \(14370024 \mathrm{y}^{6}\) (c) \(43110144 \mathrm{y}^{6}\) (d) \(43110124 \mathrm{y}^{6}\)
The remainder when \(2^{3 n}-7 n+4\) is divided by 49 is \(\ldots \ldots \ldots\).. (a) 0 (b) 1 (c) 4 (d) 5
\(\left[(\sqrt{2}+1)^{8}\right]=\ldots \ldots \ldots ;\) where [] is integer part function. (a) 1151 (b) 1152 (c) 1153 (a) 1154
th term is constant term in expansion of \(\left[\left(3 / x^{2}\right)+(\sqrt{x} / 3)\right]^{10}, x \neq 0\) (a) 4 (b) 7 (c) 8 (d) 9
What do you think about this solution?
We value your feedback to improve our textbook solutions.