Chapter 7: Problem 522
\(3^{\mathrm{rd}}\) term in expansion of \(\left[(1 / \mathrm{x})+\mathrm{x}^{(\log )}{ }_{10}(\mathrm{x})\right]^{5}\) is 1000 then \(\mathrm{x}=\) (a) 10 (b) 100 (c) 1000 (d) None
Chapter 7: Problem 522
\(3^{\mathrm{rd}}\) term in expansion of \(\left[(1 / \mathrm{x})+\mathrm{x}^{(\log )}{ }_{10}(\mathrm{x})\right]^{5}\) is 1000 then \(\mathrm{x}=\) (a) 10 (b) 100 (c) 1000 (d) None
All the tools & learning materials you need for study success - in one app.
Get started for freeIf 4 th term in expansion of \([p x+(1 / x)]^{n}\) is constant then \(n=\) (a) 3 (b) 4 (c) 5 (d) 6
\({ }^{\mathrm{n}} \mathrm{C}_{0}-{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}-\cdots+(-1)^{\mathrm{n} \mathrm{n}} \mathrm{C}_{\mathrm{n}}=\) (a) 0 (b) - 1 (c) \(\mathrm{n}\) (d) 1
In the expansion of \(\left[\mathrm{a}^{(2 / 5)}+\mathrm{b}^{(1 / 3)}\right]^{35} \mathrm{a} \neq \mathrm{b}\), the number of terms in which the power of a and \(\mathrm{b}\) are integers are (a) 1 (b) 2 (c) 3 (d) 4
The least positive remainder when \(17^{30}\) is divided by 5 is (a) 2 (b) 4 (c) 3 (d) 1
If \(\left(1-x+x^{2}\right) n=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}\) then \(a_{0}+a_{2}\) \(+a_{4}+\cdots+a_{2 n}=\) (a) \(\left[\left(3^{\mathrm{n}}-1\right) / 2\right]\) (b) \(\left[\left(1-3^{\mathrm{n}}\right) / 2\right]\) (c) \(\left[\left(3^{\mathrm{n}}+1\right) / 2\right]\) (d) \(\left[\left(3^{\mathrm{n}+1}\right) / 2\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.