Chapter 7: Problem 526
Co-efficient of \(\mathrm{x}^{5}\) in expansion of \((1+2 \mathrm{x})^{6}(1-\mathrm{x})^{7}\) is....... (a) 150 (b) 171 (c) 192 (d) 161
Chapter 7: Problem 526
Co-efficient of \(\mathrm{x}^{5}\) in expansion of \((1+2 \mathrm{x})^{6}(1-\mathrm{x})^{7}\) is....... (a) 150 (b) 171 (c) 192 (d) 161
All the tools & learning materials you need for study success - in one app.
Get started for freeIt coefficients of middle terms in expansion of \((1+\lambda \mathrm{x})^{8}\) and \((1-\lambda \mathrm{x})^{6}\) are equal then \(\lambda=\) (a) \((2 / 7)\) (b) \([(-2) / 7]\) (c) \([(-3) / 7]\) (d) None of these
Coefficients of \((2 r+4)\) th term and \((r-2)\) th term are equal in expansion of \((1+x)^{18}\) then \(r=\) (a) 4 (b) 5 (c) 6 (d) 7
\(17^{\text {th }}\) term and \(18^{\text {th }}\) term are equal in expansion of \((2+x)^{40}\) then \(\mathrm{x}=\) (a) \((17 / 24)\) (b) \((17 / 12)\) (c) \((34 / 13)\) (d) \((34 / 15)\)
The constant term in expansion of \(\left[\left\\{(x+1) /\left\\{x^{(2 / 3)}-x^{(1 / 3)}+1\right\\}\right\\}-\left\\{(x-1) /\left(x-x^{(1 / 2)}\right)\right\\}\right]^{10}\) is (a) 210 (b) 105 (c) 70 (d) 35
The greatest term in expansion of \((1+\mathrm{x})^{10}\) is \(\mathrm{x}=(2 / 3)\) (a) \(210(3 / 2)^{6}\) (b) \(210(2 / 3)^{6}\) (c) \(210(2 / 3)^{4}\) (d) \(210(3 / 2)^{4}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.