Chapter 7: Problem 526
Co-efficient of \(\mathrm{x}^{5}\) in expansion of \((1+2 \mathrm{x})^{6}(1-\mathrm{x})^{7}\) is....... (a) 150 (b) 171 (c) 192 (d) 161
Chapter 7: Problem 526
Co-efficient of \(\mathrm{x}^{5}\) in expansion of \((1+2 \mathrm{x})^{6}(1-\mathrm{x})^{7}\) is....... (a) 150 (b) 171 (c) 192 (d) 161
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen \(5^{20}\) is divided by 48 then remainder is (a) 2 (b) 0 (c) 1 (d) 5
Let \(\mathrm{x}>-1\) then statement \((1+\mathrm{x})^{\mathrm{n}}>1+\mathrm{n} \mathrm{x}\) is true for (a) \(\forall \mathrm{n} \in \mathrm{N}\) (b) \(\forall n>1\) (c) \(\forall \mathrm{n}>1\) and \(\mathrm{x} \neq 0\) (d) \(\forall \mathrm{n} \in \mathrm{R}\)
\({ }^{\mathrm{n}} \sum_{\mathrm{r}=0}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} 4^{\mathrm{r}}=\) (a) \(4^{\mathrm{n}}\) (b) \(5^{\mathrm{n}}\) (c) \(4^{-n}\) (d) \(5^{-n}\)
\(3^{\mathrm{rd}}\) term in expansion of \(\left[(1 / \mathrm{x})+\mathrm{x}^{(\log )}{ }_{10}(\mathrm{x})\right]^{5}\) is 1000 then \(\mathrm{x}=\) (a) 10 (b) 100 (c) 1000 (d) None
In the expansion of \(\left[\mathrm{a}^{(2 / 5)}+\mathrm{b}^{(1 / 3)}\right]^{35} \mathrm{a} \neq \mathrm{b}\), the number of terms in which the power of a and \(\mathrm{b}\) are integers are (a) 1 (b) 2 (c) 3 (d) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.