Chapter 7: Problem 530
When \(5^{20}\) is divided by 48 then remainder is (a) 2 (b) 0 (c) 1 (d) 5
Chapter 7: Problem 530
When \(5^{20}\) is divided by 48 then remainder is (a) 2 (b) 0 (c) 1 (d) 5
All the tools & learning materials you need for study success - in one app.
Get started for freeCo efficient of middle term in expansion of \(\left[x-\left(x^{3} / 5\right)\right]^{8}=\) (a) \([(14) /(625)]\) (b) \([(70) /(62 \overline{5)}]\) (c) \([(14) /(125)]\) (d) \([(70) /(125)]\)
In the expansion of \((\mathrm{x}+\mathrm{y})^{13}\) the co-efficient of \(3 \mathrm{rd}\) term and th terms are equal. (a) 12 (b) 11 (c) 8 (d) 13
In the binomial expansion of \((a-b)^{n}, n \geq 0\), the sum of \(5^{\text {th }}\) and \(6^{\text {th }}\) terms is zero then \((\mathrm{a} / \mathrm{b})=\) (a) \([5 /(\mathrm{n}-4)]\) (b) \([6 /(\mathrm{n}-5)]\) (c) \([(n-5) / 6]\) (d) \([(n-4) / 5]\)
Number of irrational terms in expansion of \(\left[4^{(1 / 5)}+7^{(1 / 10)}\right]^{45}=\) (a) 40 (b) 5 (c) 41 (d) 8
Number of terms in expansion of \((\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}})^{10}+(\sqrt{\mathrm{x}}-\sqrt{\mathrm{y}})^{10}\) is \(\ldots \ldots\) (a) 5 (b) 6 (c) 7 (d) 8
What do you think about this solution?
We value your feedback to improve our textbook solutions.