Chapter 7: Problem 530
When \(5^{20}\) is divided by 48 then remainder is (a) 2 (b) 0 (c) 1 (d) 5
Chapter 7: Problem 530
When \(5^{20}\) is divided by 48 then remainder is (a) 2 (b) 0 (c) 1 (d) 5
All the tools & learning materials you need for study success - in one app.
Get started for free\({ }^{\mathrm{n}} \mathrm{C}_{1}+2 \cdot{ }^{\mathrm{n}} \mathrm{C}_{2}+3 \cdot{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots+\mathrm{n} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=\) (a) n \(\cdot 2^{n-1}\) (b) \((\mathrm{n}-1) 2^{\mathrm{n}-1}\) (c) \((\mathrm{n}+1) 2^{\mathrm{n}-1}\) (d) \((\mathrm{n}-1) 2^{\mathrm{n}}\)
\(\mathrm{R}=(3+\sqrt{5})^{2 \mathrm{n}}\) and \(\mathrm{f}=\mathrm{R}-[\mathrm{R}]\), Where [] is an integer part function then \(\mathrm{R}(1-\mathrm{f})=\) (a) \(2^{2 \mathrm{n}}\) (b) \(4^{2 \mathrm{n}}\) (c) \(8^{2 \mathrm{n}}\) (d) \(1^{2 \mathrm{n}}\)
If the ratio of co-efficient of three consecutive terms in expansion of \((1+x)^{n}\) is \(1: 7: 42\) then \(n=\) (a) 35 (b) 45 (c) 55 (d) 65
The Co-efficient of \(\mathrm{x}^{\mathrm{n}}\) in the expansion of \((1+\mathrm{x})(1-\mathrm{x})^{\mathrm{n}}\) is (a) \((-1)^{\mathrm{n}-1}(\mathrm{n}-1)^{2}\) (b) \((-1)^{\mathrm{n}}(1-\mathrm{n})\) (c) \(n-1\) (d) \((-1)^{\mathrm{n}-1} \mathrm{n}\)
In the binomial expansion of \((a-b)^{n}, n \geq 0\), the sum of \(5^{\text {th }}\) and \(6^{\text {th }}\) terms is zero then \((\mathrm{a} / \mathrm{b})=\) (a) \([5 /(\mathrm{n}-4)]\) (b) \([6 /(\mathrm{n}-5)]\) (c) \([(n-5) / 6]\) (d) \([(n-4) / 5]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.