Chapter 7: Problem 531
The remainder when \(2^{3 n}-7 n+4\) is divided by 49 is \(\ldots \ldots \ldots\).. (a) 0 (b) 1 (c) 4 (d) 5
Chapter 7: Problem 531
The remainder when \(2^{3 n}-7 n+4\) is divided by 49 is \(\ldots \ldots \ldots\).. (a) 0 (b) 1 (c) 4 (d) 5
All the tools & learning materials you need for study success - in one app.
Get started for free\(10^{\text {th }}\) term in expansion of \(\left[2 x^{2}+(1 / x)\right]^{12}\) is \(\ldots \ldots \ldots\) (a) \(\left[(1760) / \mathrm{x}^{2}\right]\) (b) \(\left[(1760) / \mathrm{x}^{3}\right]\) (c) \(\left[(880) / \mathrm{x}^{2}\right]\) (d) \(\left[(880) / \mathrm{x}^{3}\right]\)
Index number of middle term in expansion of \(\left[1+a+\left(a^{2} / 4\right)\right]^{n}\) is (a) \((\mathrm{n} / 2)+1\) (b) \([(\mathrm{n}+2) / 2]\) (c) \(n+1\) (d) \([(\mathrm{n}+3) / 2]\)
\(\left[\left\\{19^{3}+6^{3}+3(19)(6)(25)\right\\} /\left\\{3^{6}+6(243)(2)+(15)(81)(4)\right.\right.\) \(\left.\left.+(20)(27)(8)+(15)(9)(16)+(6)(3)(32)+2^{6}\right\\}\right]=\) (a) (b) 5 (c) 2 (d) 6
If the co-efficient of rth, \((\mathrm{r}+1)\) th and \((\mathrm{r}+2)\) th terms in the binomial expansion of \((1+\mathrm{y})^{\mathrm{m}}\) are in \(\mathrm{A} . \mathrm{P}\). then \(\mathrm{m}\) and \(\mathrm{r}\) satisfy the equation (a) \(m^{2}-m(4 r+1)+4 r^{2}-2=0\) (b) \(m^{2}-(4 r-1) m+4 r^{2}+2=0\) (c) \(m^{2}-(4 r-1) m+4 r^{2}-2=0\) (d) \(m^{2}-(4 r+1) m+4 r^{2}+2=0\)
Remainder when \(2^{2000}\) is divided by 17 is......... (a) 1 (b) 2 (c) 8 (d) 12
What do you think about this solution?
We value your feedback to improve our textbook solutions.