Chapter 7: Problem 531
The remainder when \(2^{3 n}-7 n+4\) is divided by 49 is \(\ldots \ldots \ldots\).. (a) 0 (b) 1 (c) 4 (d) 5
Chapter 7: Problem 531
The remainder when \(2^{3 n}-7 n+4\) is divided by 49 is \(\ldots \ldots \ldots\).. (a) 0 (b) 1 (c) 4 (d) 5
All the tools & learning materials you need for study success - in one app.
Get started for freeThe number of rational terms in expansion of \((1+\sqrt{2}+3 \sqrt{5})^{6}\) are (a) 22 (b) 12 (c) 11 (d) 7
Coefficients of middle terms in expansion of \(\left[2-\left(\mathrm{x}^{3} / 3\right)\right]^{7}\) are... (a) \(-[(560) /(27)],-[(280) /(81)]\) (b) \([(560) /(27)],-[(280) /(81)]\) (c) \(-[(560) /(27)],[(280) /(81)]\) (d) \([(560) /(27)],[(280) /(81)]\)
\(\mathrm{R}=(3+\sqrt{5})^{2 \mathrm{n}}\) and \(\mathrm{f}=\mathrm{R}-[\mathrm{R}]\), Where [] is an integer part function then \(\mathrm{R}(1-\mathrm{f})=\) (a) \(2^{2 \mathrm{n}}\) (b) \(4^{2 \mathrm{n}}\) (c) \(8^{2 \mathrm{n}}\) (d) \(1^{2 \mathrm{n}}\)
If \(\mathrm{P}\) and \(\mathrm{Q}\) are coefficients of \(\mathrm{x}^{\mathrm{n}}\) in expansion of \((1+\mathrm{x})^{2 \mathrm{n}}\) and \((1+x)^{2 n-1}\) then (a) \(\mathrm{P}=\mathrm{Q}\) (b) \(P=2 Q\) (c) \(2 \mathrm{P}=\mathrm{Q}\) (a) \(P+Q=0\)
Remainder when \(8^{2 \mathrm{n}}-62^{2 \mathrm{n}+1}\) is divided by 9 is (a) 0 (b) 2 (c) 7 (d) 8
What do you think about this solution?
We value your feedback to improve our textbook solutions.