Chapter 7: Problem 533
The least positive remainder when \(17^{30}\) is divided by 5 is (a) 2 (b) 4 (c) 3 (d) 1
Chapter 7: Problem 533
The least positive remainder when \(17^{30}\) is divided by 5 is (a) 2 (b) 4 (c) 3 (d) 1
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the expansion of \((x-y)^{10}\), (co-efficient of \(x^{7} y^{3}\) ) \(\left(\right.\) co-efficient of \(\left.x^{3} y^{7}\right)=\) (a) \({ }^{10} \mathrm{C}_{7}\) (b) \({ }^{2.10} \mathrm{C}_{7}\) (c) \({ }^{10} \mathrm{C}_{7}+{ }^{10} \mathrm{C}_{1}\) (d) 0
\(17^{\text {th }}\) term and \(18^{\text {th }}\) term are equal in expansion of \((2+x)^{40}\) then \(\mathrm{x}=\) (a) \((17 / 24)\) (b) \((17 / 12)\) (c) \((34 / 13)\) (d) \((34 / 15)\)
\((\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}=\) (a) 58 (b) \(58 \sqrt{2}\) (c) \(-58\) (d) \(-58 \sqrt{2}\)
It \(\mathrm{A}\) and \(\mathrm{B}\) are coefficients of \(\mathrm{x}^{\mathrm{r}}\) and \(\mathrm{x}^{\mathrm{n}-\mathrm{r}}\) respectively in expansion of \((1+x)^{n}\) then \(=\) (a) \(\mathrm{A}+\mathrm{B}=\mathrm{n}\) (b) \(\mathrm{A}=\mathrm{B}\) (c) \(\mathrm{A}+\mathrm{B}=2^{\mathrm{n}}\) (d) \(A-B=2^{n}\)
\(\left[5^{(1 / 2)}+7^{(1 / 8)}\right]^{1024}\) has number of rational terms \(=\) (a) 0 (b) 129 (c) 229 (d) 178
What do you think about this solution?
We value your feedback to improve our textbook solutions.