Chapter 7: Problem 536
\({ }^{10} \mathrm{C}_{1}+{ }^{10} \mathrm{C}_{3}+{ }^{10} \mathrm{C}_{5}+\ldots \ldots \ldots+{ }^{10} \mathrm{C}_{9}=\) (a) 512 (b) 1024 (c) 2048 (d) 1023
Chapter 7: Problem 536
\({ }^{10} \mathrm{C}_{1}+{ }^{10} \mathrm{C}_{3}+{ }^{10} \mathrm{C}_{5}+\ldots \ldots \ldots+{ }^{10} \mathrm{C}_{9}=\) (a) 512 (b) 1024 (c) 2048 (d) 1023
All the tools & learning materials you need for study success - in one app.
Get started for free\(\left[5^{(1 / 2)}+7^{(1 / 8)}\right]^{1024}\) has number of rational terms \(=\) (a) 0 (b) 129 (c) 229 (d) 178
\(\left|\begin{array}{c}\mathrm{n}-1 \\\ 1\end{array}\right|+\left|\begin{array}{c}\mathrm{n}-1 \\\ 2\end{array}\right|+\ldots+\left|\begin{array}{l}\mathrm{n}-1 \\\ \mathrm{n}-1\end{array}\right|=\underline{ } ; \mathrm{n}>1\) (a) \(2^{\mathrm{n}}-1\) (b) \(2^{\mathrm{n}-2}\) (c) \(2^{\mathrm{n}-1}-1\) (d) \(2^{\mathrm{n}-1}\)
The greatest term in expansion of \((3+2 \mathrm{x})^{50}\) is \(;\) where \(\mathrm{x}=(1 / 5)\) (a) \({ }^{50} \mathrm{C}_{7} 343(2 / 5)^{7}\) (b) \({ }^{50} \mathrm{C}_{6} 3^{44}(2 / 5)^{6}\) (c) \({ }^{50} \mathrm{C}_{43} 3^{7}(2 / 5)^{43}\) (d) \({ }^{50} \mathrm{C}_{44} 3^{6}(2 / 5)^{44}\)
\(\left|\begin{array}{l}\mathrm{n} \\\ 0\end{array}\right|+3\left|\begin{array}{l}\mathrm{n} \\\ 1\end{array}\right|+5\left|\begin{array}{l}\mathrm{n} \\\ 2\end{array}\right|+\ldots+(2 \mathrm{n}+1)\left|\begin{array}{l}\mathrm{n} \\\ \mathrm{n}\end{array}\right|=\ldots ; \mathrm{n} \in \mathrm{N}\) (a) \((\mathrm{n}+2) 2^{\mathrm{n}}\) (b) \((n+1) 2^{n}\) (c) \(\mathrm{n} 2^{\mathrm{n}}\) (d) \((\mathrm{n}+1) 2^{\mathrm{n}+1}\)
Remainder when \(2^{2000}\) is divided by 17 is......... (a) 1 (b) 2 (c) 8 (d) 12
What do you think about this solution?
We value your feedback to improve our textbook solutions.