Chapter 7: Problem 550
The number of rational terms in expansion of \((1+\sqrt{2}+3 \sqrt{5})^{6}\) are (a) 22 (b) 12 (c) 11 (d) 7
Chapter 7: Problem 550
The number of rational terms in expansion of \((1+\sqrt{2}+3 \sqrt{5})^{6}\) are (a) 22 (b) 12 (c) 11 (d) 7
All the tools & learning materials you need for study success - in one app.
Get started for free\(\left[\left(a^{1 / 3} / b^{1 / 6}\right)+\left(b^{1 / 2} / a^{1 / 6}\right)\right]^{21}\) has same power of a and \(b\) for \((\mathrm{r}+1)\) th term then \(\mathrm{r}=\) (a) 8 (b) 9 (c) 10 (d) 11
In the expansion of \((\mathrm{x}+\mathrm{y})^{13}\) the co-efficient of \(3 \mathrm{rd}\) term and th terms are equal. (a) 12 (b) 11 (c) 8 (d) 13
\(\left|\begin{array}{l}\mathrm{n} \\\ 0\end{array}\right|+3\left|\begin{array}{l}\mathrm{n} \\\ 1\end{array}\right|+5\left|\begin{array}{l}\mathrm{n} \\\ 2\end{array}\right|+\ldots+(2 \mathrm{n}+1)\left|\begin{array}{l}\mathrm{n} \\\ \mathrm{n}\end{array}\right|=\ldots ; \mathrm{n} \in \mathrm{N}\) (a) \((\mathrm{n}+2) 2^{\mathrm{n}}\) (b) \((n+1) 2^{n}\) (c) \(\mathrm{n} 2^{\mathrm{n}}\) (d) \((\mathrm{n}+1) 2^{\mathrm{n}+1}\)
If middle term is \(\mathrm{kx}^{\mathrm{m}}\) in expansion of \([\mathrm{x}+(1 / \mathrm{x})]^{12}\) then \(\mathrm{m}=\) (a) \(-2\) (b) \(-1\) (c) 0 (d) 1
It coefficients of middle terms in expansion of \((1+\lambda \mathrm{x})^{8}\) and \((1-\lambda \mathrm{x})^{6}\) are equal then \(\lambda=\) (a) \((2 / 7)\) (b) \([(-2) / 7]\) (c) \([(-3) / 7]\) (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.