Chapter 7: Problem 550
The number of rational terms in expansion of \((1+\sqrt{2}+3 \sqrt{5})^{6}\) are (a) 22 (b) 12 (c) 11 (d) 7
Chapter 7: Problem 550
The number of rational terms in expansion of \((1+\sqrt{2}+3 \sqrt{5})^{6}\) are (a) 22 (b) 12 (c) 11 (d) 7
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{x}\) is so small that terms with \(\mathrm{x}^{3}\) and higher powers of \(\mathrm{x}\) may be neglected then \(\left[\left\\{(1+\mathrm{x})^{(3 / 2)}-\\{1+(\mathrm{x} / 2)\\}^{3}\right\\} /\left\\{(1-\mathrm{x})^{(1 / 2)}\right\\}\right]\) may be approximated as \(\ldots \ldots \ldots\) (a) \([(-3) / 8] \mathrm{x}^{2}\) (b) \((1 / 2) \mathrm{x}-(3 / 8) \mathrm{x}^{2}\) (c) \(1-(3 / 8) x^{2}\) (d) \(3 x+(3 / 8) x^{2}\)
Coefficients of middle terms in expansion of \(\left[2-\left(\mathrm{x}^{3} / 3\right)\right]^{7}\) are... (a) \(-[(560) /(27)],-[(280) /(81)]\) (b) \([(560) /(27)],-[(280) /(81)]\) (c) \(-[(560) /(27)],[(280) /(81)]\) (d) \([(560) /(27)],[(280) /(81)]\)
If the co-efficient of rth, \((\mathrm{r}+1)\) th and \((\mathrm{r}+2)\) th terms in the binomial expansion of \((1+\mathrm{y})^{\mathrm{m}}\) are in \(\mathrm{A} . \mathrm{P}\). then \(\mathrm{m}\) and \(\mathrm{r}\) satisfy the equation (a) \(m^{2}-m(4 r+1)+4 r^{2}-2=0\) (b) \(m^{2}-(4 r-1) m+4 r^{2}+2=0\) (c) \(m^{2}-(4 r-1) m+4 r^{2}-2=0\) (d) \(m^{2}-(4 r+1) m+4 r^{2}+2=0\)
If the sum of co-efficient of expansion \(\left(m^{2} x^{2}+2 m x+1\right)^{31}\) is zero then \(\mathrm{m}=\) (a) 1 (b) - 1 (c) 2 (d) \(-2\)
Sum of Co-efficient of last 15 terms in expansion of \((1+\mathrm{x})^{29}\) is (a) \(2^{15}\) (b) \(2^{30}\) (c) \(2^{29}\) (d) \(2^{28}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.