Chapter 7: Problem 571
\(\left[(\sqrt{3}+1)^{6}\right]=\ldots \ldots \ldots ;\) where [] is integer part function. (a) 415 (b) 416 (c) 417 (a) 418
Chapter 7: Problem 571
\(\left[(\sqrt{3}+1)^{6}\right]=\ldots \ldots \ldots ;\) where [] is integer part function. (a) 415 (b) 416 (c) 417 (a) 418
All the tools & learning materials you need for study success - in one app.
Get started for freeIf coefficients of \(\mathrm{x}^{7}\) and \(\mathrm{x}^{8}\) are equal in expansion of \([2+(\mathrm{x} / 3)]^{\mathrm{n}}\) then \(\mathrm{n}=\) (a) 55 (b) 56 (c) 54 (d) 58
Constant term in expansion of \([1+(2 / \mathrm{x})-(2 / \mathrm{x})]^{4}\) is ........ (a) 5 (b) \(-5\) (c) 4 (d) \(-4\)
The least positive remainder when \(17^{30}\) is divided by 5 is (a) 2 (b) 4 (c) 3 (d) 1
The expansion of \(\left[\mathrm{x}+\sqrt{\left(\mathrm{x}^{3}-1\right)}\right]^{5}+\left[\mathrm{x}-\sqrt{\left(\mathrm{x}^{3}-1\right)}\right]^{5}\) is a polynomial of degree (a) 5 (b) 6 (c) 7 (d) 8
\({ }^{\mathrm{n}} \mathrm{C}_{1}+2 \cdot{ }^{\mathrm{n}} \mathrm{C}_{2}+3 \cdot{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots+\mathrm{n} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=\) (a) n \(\cdot 2^{n-1}\) (b) \((\mathrm{n}-1) 2^{\mathrm{n}-1}\) (c) \((\mathrm{n}+1) 2^{\mathrm{n}-1}\) (d) \((\mathrm{n}-1) 2^{\mathrm{n}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.