Chapter 7: Problem 571
\(\left[(\sqrt{3}+1)^{6}\right]=\ldots \ldots \ldots ;\) where [] is integer part function. (a) 415 (b) 416 (c) 417 (a) 418
Chapter 7: Problem 571
\(\left[(\sqrt{3}+1)^{6}\right]=\ldots \ldots \ldots ;\) where [] is integer part function. (a) 415 (b) 416 (c) 417 (a) 418
All the tools & learning materials you need for study success - in one app.
Get started for free\(10^{\text {th }}\) term in expansion of \(\left[2 x^{2}+(1 / x)\right]^{12}\) is \(\ldots \ldots \ldots\) (a) \(\left[(1760) / \mathrm{x}^{2}\right]\) (b) \(\left[(1760) / \mathrm{x}^{3}\right]\) (c) \(\left[(880) / \mathrm{x}^{2}\right]\) (d) \(\left[(880) / \mathrm{x}^{3}\right]\)
\(\left[5^{(1 / 2)}+7^{(1 / 8)}\right]^{1024}\) has number of rational terms \(=\) (a) 0 (b) 129 (c) 229 (d) 178
Co efficient of middle term in expansion of \(\left[x-\left(x^{3} / 5\right)\right]^{8}=\) (a) \([(14) /(625)]\) (b) \([(70) /(62 \overline{5)}]\) (c) \([(14) /(125)]\) (d) \([(70) /(125)]\)
The sum of coefficient of middle terms in expansion of \((1+x)^{2 n-1}\) is (a) \({ }^{(2 \mathrm{n}-1)} \mathrm{C}_{\mathrm{n}}\) (b) \({ }^{(2 \mathrm{n}-1)} \mathrm{C}_{(\mathrm{n}-1)}\) (c) \({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}\) (d) \({ }^{2 \mathrm{n}} \mathrm{C}_{(\mathrm{n}+1)}\)
If rth term in expansion of \([x+(1 / 2 x)]^{12}\) is constant then \(r\) (a) 5 (b) 6 (c) 7 (d) 8
What do you think about this solution?
We value your feedback to improve our textbook solutions.