Chapter 7: Problem 574
If rth term in expansion of \(\left[2 \mathrm{x}^{3}+\left(5 / \mathrm{x}^{2}\right)\right]^{10}\) is constant then \(\mathrm{r}\) (a) 6 (b) 7 (c) 4 (d) 5
Chapter 7: Problem 574
If rth term in expansion of \(\left[2 \mathrm{x}^{3}+\left(5 / \mathrm{x}^{2}\right)\right]^{10}\) is constant then \(\mathrm{r}\) (a) 6 (b) 7 (c) 4 (d) 5
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the sum of co-efficient of expansion \(\left(m^{2} x^{2}+2 m x+1\right)^{31}\) is zero then \(\mathrm{m}=\) (a) 1 (b) - 1 (c) 2 (d) \(-2\)
In the expansion of \((x-y)^{10}\), (co-efficient of \(x^{7} y^{3}\) ) \(\left(\right.\) co-efficient of \(\left.x^{3} y^{7}\right)=\) (a) \({ }^{10} \mathrm{C}_{7}\) (b) \({ }^{2.10} \mathrm{C}_{7}\) (c) \({ }^{10} \mathrm{C}_{7}+{ }^{10} \mathrm{C}_{1}\) (d) 0
\(\mathrm{s}(\mathrm{k}): 1+3+5+\ldots+(2 \mathrm{k}-1)=3+\mathrm{k}^{2}\) then which statement is true ? (a) \(\mathrm{s}(\mathrm{k}) \Rightarrow \mathrm{s}(\mathrm{k}+1)\) (b) \(\mathrm{s}(\mathrm{k}) \Rightarrow \mathrm{s}(\mathrm{k}+1)\) (c) s (1) is true (d) Result is proved by Principle of Mathematical induction
6 th term in the expansion of \(\left[\left(1 / x^{(8 / 3)}\right)+x^{2} \log _{10} x\right]^{8}\) is 5600 then \(\mathrm{x}=\) (a) 2 (b) \(\sqrt{5}\) (c) \(\sqrt{(10)}\) (d) 10
\(\mathrm{R}=(3+\sqrt{5})^{2 \mathrm{n}}\) and \(\mathrm{f}=\mathrm{R}-[\mathrm{R}]\), Where [] is an integer part function then \(\mathrm{R}(1-\mathrm{f})=\) (a) \(2^{2 \mathrm{n}}\) (b) \(4^{2 \mathrm{n}}\) (c) \(8^{2 \mathrm{n}}\) (d) \(1^{2 \mathrm{n}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.